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ABSTRACT

The results of an experimental program to investigate the effects of

motion cues on STOL approach are presented. The simulator used was the

Six-Degrees-of-Freedom Motion Simulator (S.01) at Ames Research Center of

NASA which has ±2.7 m travel longitudinally and laterally and ±2.5 m travel

vertically. Three major experiments, characterized as tracking tasks, were

conducted under fixed and moving base conditions. The first was simulated

IFR approach of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), the

second was a similar simulated VFR task with the same aircraft, and the third

a single-axis task having only linear acceleration as the motion cue. Track-

ing performance was measured in terms of the variances of several motion

variables, pilot vehicle describing functions, and pilot commentary.

The results show that the dominant (i.e., largest and most easily

discerned) effect of motion is on vehicle attitude control. Motion also

affects path control, but to a lesser and more variable extent
He~|~u~ls J-]e ,oi;ve-, rernained thl samc, or dctcr-'Vratccdi2er<

upon subject, task, and controlled variable (altitude or lateral deviation).

In the context of a continuous tracking task, pilots can respond to rms

angular rates as low as 20 mr/sec and to rms linear accelerations as low as

0.05 g; in the latter instance pilot sensitivity to these cues appears inde-

pendent of the direction of the linear acceleration. Pilot usage of linear

acceleration cues in simulated flight was heavily dependent upon pilot back-

ground. For example, the altitude performance of a former helicopter pilot

was sensitive to the presence or absence of a vertical acceleration cue,

while a former Navy jet pilot's commentary was quite sensitive to the nature

of the longitudinal acceleration cue. Finally, the pilots proved quite sensi-

tive to anomalous simulation cab rates resulting from the residual tilt of the

cab used to duplicate low frequency translational accelerations.
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SECTION I

INTRODUCTION

A. BACKGROUND AND OBJECTIVES

The purpose of this report is to document the results of a recent

experimental study on the effects of motion cues on STOL aircraft. The

study represents a follow-on to more generalized research (c.f., Refs. 1

and 2). Here the interest is in STOL vehicles, specifically during the

approach, flare, and landing phases of flight wherein the STOL aircraft,

because it is in part thrust supported, has behavior significantly different

from that of conventional aircraft. The study had the general objective

of investigating the importance of motion cues in the STOL approach, flare

and landing task. The specific airplane considered was the Augmenter Wing

Jet STOL Research Aircraft (AWJSRA), a modified C-8A Buffalo. The moving

base simulator was the Six Degrees of Freedom Motion Simulator at the Ames

Research Center (ARC) of the NASA. The specific objectives are listed

below.?,

* To investigate the relevance of vertical motion
cues in STOL approach and landing.

* To investigate the effective angular motion
thresholds in simulated flight relative to those
measured on the MCRD (Man Carrying Rotation
Device) at ARC.

* To investigate STOL landing simulation problems
with reference to the AWJSRA.

These objectives are amplified below.

First, the reason for the concern with vertical motion cues is in part

dependent upon the results of past experimental studies (c.f., Ref. 3) using

the Flight Simulator for Advanced Aircraft (FSAA) at ARC. This simulator

has considerable lateral travel (±+15 m) and can therefore simulate motion

cues in the lateral control tasks to a high degree of fidelity. However it

is quite limited in its vertical (+1 .5 m) and fore-and-aft (+1.2 m) travel.

Past experimental results obtained with the FSAA and related-.to the longi-

tudinal control task in the AWJSRA might therefore be questioned because
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of the limited travel. Therefore, it was thought that simulation on the

Six Degrees of Freedom (6 DOF) Motion Simulator (±2.7 m laterally and

longitudinally, ±2.5.m vertically) offered the potential of easing these

doubts.

With regard to the second objective, the results of an earlier study

of VTOL hovering (Ref. 4) suggested that the effective angular motion

thresholds of the subject pilots were a strong influencing factor. These

thresholds may, at least in part, be related. to physiological measurements,

i.e., measurements of vestibular threshold, as on the MCRD. The method-

ology of these measurements is described in Ref. 5. The current study

sought to gain further information on these effective thresholds and their

correlation with MCPD measurements on the same pilots.

There are two major problems associated with the third objective.

The first of these is establishing the appropriate compromises in the

design of motion washout circuits. In the previously mentioned study of

VTOL hovering (Ref. 4) it was discovered that the lack of coordination

between the rotational and translational motions of the simulator could

provide the pilot with vehicle attitude cues which he would not get in

flight. It was therefore decided to provide a coordinated motion washout

in the current program. In this scheme, the simulator cab is tilted to

provide the sensations of lateral and longitudinal accelerations at low

frequencies while cab translations provide the high frequency sensations.

In so doing, anomalous "residual tilt" rates are introduced. In most

cases, the residual tilt rates are excessive unless all of the motions

are also attenuated by some constant factor. The more the motion is

attenuated, the smaller are the residual tilt rates. The compromise is

then between excessive attenuation and excessive residual rates.

The second problem relates to VFR-IFR differences in fixed and moving

base situations. Pilot comments would suggest that the presence of motion

enhances the "reality" of a simulated VFR display. The results of Ref. 4

suggest that pilots can use a g-vector tilt cue proportional to vehicle

attitude (if present) in an IFR situation where the necessity of scanning

several instrunents forces the pilot to look away from the attitude ball.

TR-1 014-2 2



This tilt cue would presumably be less important under VFR conditions where

he could obtain it visually at all times. Also, tighter control would be

expected VFR, so other motion (e.g., attitude rates) could be more important.

These examples suggest that, in a given simulation, motion differences

(that is, fixed base to moving base differences) may be dissimilar between

IFR and VFR situations.

A two-phase experimental program was planned to be consistent with these

objectives. The Phase I program had as its major objective the validation

of the experimental concept, while Phase II was intended to provide most

of the data. The next subsection summarizes the Phase I experiment and

results. Subsection C outlines the Phase II experiments, thereby guiding

the reader to the remainder of this report.

B. PHASE I EXPERIMENT AND RESULTS

Prior to running the Phase I experiment (to be outlined below), an

analysis of the experimental situation was conducted to estimate the effects

of motion cues. An analysis of the longitudinal handling qualities of the

AWJSRA, conducted under a concurrent program*, formed the basis. The

analytical results predicted relatively small improvements in pilot opinion

with the addition of motion cues, primarily because of relatively low control

and maneuvering power in the longitudinal task. Motion would primarily

affect pitch attitude control and have relatively minor effects on flight

path control. There was the possibility that the pilot could obtain a

small benefit from the vertical acceleration cue in the control of flight

path.

The experimental task was one of straight in approach in light-to-

moderate turbulence using the ILS needles as a reference; followed by

visual breakout (transition to VFR), continued approach, flare and landing.

The experimental setup was intended to resemble an earlier one of the

*Contract No. NAS2-6441, "Flight Director Displays and Stability
Augmentation System for the Augmentor Wing Jet STOL Research Aircraft."
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AWJSP\ on the FSAA. However some compronmises were necessary, as noted

below:

0 Black-and-white TV monitor (instead of color
with a collimating lens). Magnetic fields
associated with the 6 DOF drive motors would
throw a color image out of register.

a Centerstick (instead of column and yoke).

e Throttle and diverter on console to pilot's
left (instead of overhead and to the right).
The engine instruments were relocated to the
left side of the instrument panel.

In addition, there was an instrument change - the three-axis attitude

ball incorporated both glide slope and localizer indications while the

equivalent FSAA simulation had the localizer incorporated on the compass.

The details of the experimental setup are given in Appendix A.

Time averaged (over 100 sec) tracking performance was measured for fixed

and moving base conditions, with and without a lateral and directional

stability auanmentation system (SAS) in the IFR portion of the simulated

approach. Problems with the visual display system precluded obtaining arnr

meaningful data on the VF portion. The IFR results indicated (detailed

in Appendix B) relatively small motion effects. Specifically:

o Inner loop (attitude) variables showed some
improvement with motion (as expected).

o Outer loop (position) variables showed little
change with motion. In fact, they deteriorated
slightly, although the deterioration was not
statistically significant.

* Pilot opinion suggested the motion to be barely
detectable in many instances and of little
tangible benefit.

An examination of the data after the conclusion of the Phase I experiment

suggested two possible effects which could have confounded the measurements.

The first of these was the low velocity of the ILS needles which could have

made it difficult for the pilot to perceive needle rates. In effect, the

setup was such that the pilot's visual velocity threshold could have limited

his performance. The display's lack of sensitivity coluld also have led to
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a reduction in the performance going from fixed base to moving base if

the vibration in the simulator adversely affected the pilot's ability to

fixate on the display.

This suggested the second possible confounding effect which is termed,

"inhibition/distraction." Here the reference is to two different things,

with indistinguishable effects. Inhibition refers to the pilot's concern

or worry about hitting the motion limits in the simulator. In the course

of running this experiment, especially during the practice sessions, the

pilot had several occasions when he hit the motion simulator limits, most

often the lateral limits. This is a very upsetting experience because the

pilot's cues are suddenly very wrong, viz., a sharp acceleration pulse as

the cab hits the limit to bring it to a stop, followed by an oppositely

directed pulse as it jerks off the limit to resume motion. The pilot's

sense of identification with the simulation as being a real airplane is

destroyed - his real concern is with hitting the stops. Obviously this

only applies to a moving base situation. It is possible that his worry and

concern, moving base, may deteriorate the results more than the motion cues

.xt ir,-oe them.i Tnhe ex+ er..-1th pnsli -e-bi3.it% of hi+tt.ng +ile

limits may have caused the pilot to change his strategy such that he didn't

hit the limits, and only secondly to worry about minimizing the displayed

errors.

Distraction refers to the fact that the simulator tends to vibrate and

rumble as it is moving around in the linear degrees of freedom. This might

be expected to distract the pilot from the task at hand. Furthermore, the

vibration, as indicated above, may increase the pilot's effective visual

velocity threshold. Either effect might have deteriorated his performance

in the experiment.

There were several additional factors which may have affected pilot

performance, particularly in the lateral task. The pilot complained of an

insensitive sideslip indicator and he thought the rudder pedals were "too

sensitive." The force characteristics of the latter were such as to make

it difficult to exert precise control about zero. These two defects were

corrected for Phase II. A third defect in the simulation fidelity was a

tendency for the attitude ball to stick in heading, although this wasn't

mentioned by the pilot as contributing to deteriorated performance.
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C. PHASE II SUMMARY AND REPORT OUTLINE

Because of the conflicting results of Phase I, a three-experiment program

was configured for Phase II. A central feature in all experiments was the

measurement of pilot-vehicle describing functions as well as performance

and pilot opinion.

Section II, following, describes the setup, procedure and results for

the first of these, a single-axis tracking experiment. This was a short,

exploratory effect which was conducted while the real time digital computer

simulation of the AWJSRA was being checked out for the remaining two

experiments. It used simple controlled element dynamics and simulator

motion in a single linear degree of freedom. The purpose was to determine

if the pilot could use a linear acceleration cue in a tracking task. The

answer is an unqualified yes - the measurements clearly show that the

pilot can use these cues. Further, the results are virtually the same

for vertical motion as for fore-and-aft motion.

The second experiment was an IFR tracking experiment and is discussed

in Section I1i. Tle setup was siilla- to that of Fhase I, that is, tracking

of the ILS display in the simulated AWJSRA. Its purpose was to determine if

display sensitivity or "inhibition/distraction" effects played a role in

the Phase I results. The results showed display sensitivity effects to be

dominant and motion effects to be relatively small.

The largest effort was on the VFR tracking experiment discussed in

Section IV. The task was simulated level flight of the AWJSFP over a run-

way at low altitude in the presence of disturbances. The purpose was to

determine motion effects in a simulated VFR task. Motion washout configura-

tions and the presence or absence of specific motion cues were varied.

Differences in the background of the two subject pilots dominated the

results - the two subjects preferred different linear motion cues and had

different apparent tolerances for residual tilt rates.

Overall conclusions from this research are summarized in Section V.

These relate to the importance of motion cues in STOL simulation, utiliza-

tion of linear acceleration cues, motion threshold effects, inhibiting and

distracting effects of motion in a simulation, and certain implications for

STOL moving base simulator design.
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Appendix A describes the simulation of the Augmentor Wing Jet STOL

Research Aircraft as used in the Phase II experiments, including the

coordinated washout scheme. Differences from the setup used in the Phase I

experiment are minor and noted therein.

The Phase I experimental results are covered in Appendix B. This appendix

includes a summary table of the pre-experimental predictions of motion

effects on the longitudinal task.

Appendix C provides supplementary information (chiefly data listings)

to the Phase II experiments discussed in the main text.

Appendix D describes an Ad Hoc experiment which was performed on the

AWJSRA simulation after the Phase II experiments were complete. The purpose

was to determine the benefits of longitudinal motion cues in a large

maneuver situation as opposed to the tracking tasks used in the Phase I

and II experiments. Pilot commentary was the only measure. The results

are in agreement with those in the main text with suitable allowances for

differences in task. In particular, the pilots have a low tolerance for the

residual tilt rates produced by a semi-coordinated washout scheme in large

maneuvers (pitchover to acquire the glide slope and the flare maneuver prior

to touchdown) where there is no masking effect due to simulated aerodynamic

disturbances.
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SECTION II

SINGLE-AXIS TRACKING DE2ERINT

A. PURPOSEAND BACKGROUND

The purpose of this experiment was to ascertain whether or not a pilot

could use purely linear acceleration cues to improve performance in a

tracking task; further, to determine if there were any differences ascribable

to the direction of the acceleration.

The role of linear acceleration sensing in discrete situations (e.g.,

engine failure detection) is well known, but past simulation studies of

continuous tasks, in particular the Phase I experiment, have failed to give

any positive indication that a linear acceleration cue was being used. (The

rms magnitude of vertical acceleration in this experiment was approximately

0.35 m/sec2 .) One experimental study (Ref. 6) indicated that subjects are

unreliable in their sensation of vertical motion, suggesting that vertical

acceleration cues may be unusable in a tracking task.

Presuming that the pilot can use linear acceleration cues, there is

question as to whether he is equally sensitive to vertical as opposed to

horizontal accelerations. Physiological measurements (e.g., Ref. 7) would

indicate no significant differences provided that the accelerations repre-

sent perturbations about a zero operating point. It might be argued that

the effective threshold could be larger if the pilot is required to detect

perturbations in the earth's gravitational field, i.e., with a vertical

1 g bias.

In view of these questions, it was felt worthwhile to conduct a short

(i.e., five days duration) exploratory experiment wherein the task dynamics

were specifically contrived to render it sensitive to the presence or

absence of linear acceleration cues, provided the pilot can successfully

sense and use these cues. Only brief efforts were made to optimize the

experimental design based on early results. Were the experiment to be

repeated, there are several changes which could be made to the basic setup

as well as to the experimental variables. These will be pointed out in

passing in the course of the discussion.
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B. EXPERIMENT DESCRIPTION

The task was to control the simulator cab's position along one axis
(A

(x, y, or £) at a time in the presence of a disturbance. The ILS needle

display and either the centerstick or the rudder pedals were used to affect

control. The controlled element dynamics were of a simple form, Kc/s2 (S + 1).

This controlled element has considerable lag and can be expected to require

considerable compensating pilot lead. The lead can be generated either

visually (as it must be fixed base) or using the linear acceleration cues

to augment the visual cues when moving base. The orientation of the controls

and displays was such that the pilot "chased" the display; for example, if

the horizontal bar moved up, he would pull the stick back to "catch up" with

the horizontal bar. In this respect the task resembles the maneuvering

that the pilot must go through to return to the glide slope. When the

stick was pulled back, the simulator cab moved either backwards or up,

depending upon which axis was activated. The situation was similar with

regard to the lateral task. If the needle moved to the right, the pilot

would put in right rudder pedal in order to "chase" the needle, and the

iiulatior cab moved toward the right. The pilot's objective was to main-

tain a centered position on the ILS display. This represented the desired

cab position; needle motion was directly analogous to cab motion.

The five configurations for the experiment are given in Table 1. The

table lists the symbols for each of the experimental configurations, the

manipulator and display needle that were used, and the motion simulator's

activity (either fixed base or moving in one of the three axes). Bobweight

effects were unavoidably present in Configuration LON because the arm-hand-

centerstick combination could move back and forth relative to the cab when

the cab accelerated. These effects were minimized for the VER and LAT

configurations because the control motions were perpendicular to the direc-

tion of the accelerations. In fact, this was the reason the pedals were

used for control in P and LAT - to avoid the lateral bobweight effects

which would be present if the centerstick were used for control. No

attempt was made in this experiment to calibrate the LON configuration

for the bobweight contribution. It was estimated to be relatively small.

TR-1 014-2 9



TABLE 1

CONFIGURATIONS FOR SINGLE-AXIS TRACKING EXPERIMENT

The block diagram for the experiment is shown in Fig. 1. It shows a

closed-loop system where the pilot effects control on a lagged element, to

which is added a disturbance provided by a describing function analyzer

(DFA). The latter was used to measure the system dynamics. The summed

signals continue into a double integration element. Not shown in the figure

is the lead compensation used (see Table A-3) to compensate for the inherent

motion simulator lags. Similar compensation was used to overcome display

lags of 0.06 to 0.08 sec. Ideally there should have been, at least within

the frequency range of interest, a close correspondence between the gain

and phase of the desired and the actual acceleration and between the cab

and displayed position. The acceleration cues were contaminated, to some

extent, with extraneous motion of the simulator associated with its vibra-

tory modes; however, for this experiment there was no concern with how much

"noise" there might be in addition to the "signal" in the cab's motions. No

motion washouts were used - if the display needle headed off scale, the cab

would hit its travel limit.

The describing function analyzer generated a random-appearing sum of

five nonharmonically related sine waves whose spectrum is indicated in

Table 2. The disturbance produced an error which was correlated with the

disturbance within the DFA to measure the error-to-input describing function

of the system. The result was mathematically manipulated to yield the

TR-1 014-2

SY1MBOL MANIPULATOR DISPLAY (ILS) SIMUIATOR MOTION

~S Centerstick Horizontal Bar None

LON " " " Longitudinal

VER i " Vertical

P Pedals Vertical Bar None

IAT I t It Lateral
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open loop describing function, YpYc, where:

Ke

Yc s2 (s + 1) (1)

and Yp is the effective pilot describing function in this task for visual

or motion-plus-visual inputs.

TABLE 2

DISTURBANCE SPECTRUM*, SINGLE-AXIS TRACKING EXPERIMENT

SIMULATOR ACCELERATION DISPLAY
FREQUENCY AMPLITUDE AMPLITUDE
(rad/sec) (m/sec2 ) (cm)

0.1886 0.0152 0.773
0.503 0.0366 0.261
1.257 0.229 0.261
3.016 0.229 0. 047
6.283 0.110 0 .005

r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A .....

Two subjects, whose backgrounds are summarized in Table 3, were used

in these experiments. The major difference between subjects is EF's heli-

copter experience, whereas JK's experience is entirely with fixed wing

aircraft. EF was the same subject used in the earlier experiments of

Ref. 4 involving IFR hovering of a VTOL. Relative to the other subjects

in this earlier study, he was more motion sensitive, that is, fixed-base

to moving-base differences were stronger than for the other two subjects

participating in that investigation.

The foregoing summarizes the essentials of the experiment. It should

be stressed that the experiment was exploratory. There was insufficient

time to establish asymptotic performance, or even an optimum gain, Kc, for

the controlled element. Neither the controllers, whose characteristics are

given in Table A-1, nor the displays were optimum for the experiment's

purposes. Some improvement could be made in the describing function measures

aSIM ACC = 0.345 m/sec2, oDISPL = 0.858 cm.
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to improve measurement accuracy at low frequencies. Even with these qualifi-

cations the experimental results discussed in the next subsection are felt

to be highly significant.

TABLE 3

SUBJECT BACKGROUIDS

EF: Airline flight engineer, approximately 2500 hrs in
DC-8 and B-727. Former USMC pilot with 1550 hrs
as primary flight instructor; 2000 hrs in heavy
helicopters (H-34), 1500 hrs as pilot-in-command.
Age: 37.

JK: Airline reserve copilot/navigator, approximately
3000 hrs in B-707. Former USN attack pilot with
1200 hrs in A-4 jets. Has 300 hrs in miscellaneous
light planes. Age: 30.

C. EXPERIMMNTAL RESULTS

The results were obtained in the course of five days while various

simulation checks pertinent to the remaining two Phase II experiments were

being conducted. There were approximately forty runs for each subject

during which data was recorded, preceded by about thirty exploratory (for

best gains, disturbance amplitudes, etc.) and familiarization runs for both

subjects together. The protocol was to present the configurations to the

subject in random order except that the centerstick tasks and pedal tasks

were presented in a group -a convenience for the experimenter. There

were typically ten runs (each configuration twice) in a session for each

subject.

1. Pilot Commentary

First consider the pilot commentary. Table 4 paraphrases the significant

remarks by subject and configuration. With regard to the centerstick tasks,

the commentary suggests that the pilots improve in their ability to track,

that is, in holding the needle centered, when they are in moving-base condi-

tion. However, there is very little difference between having the simulator

TR-1 014-2



move back and forth as opposed to having it move up and down. There are

also subject differences in the centerstick tasks. EF seems to benefit

more from the presence of the motion cues, as opposed to JK. To summarize,

there is a moving-base improvement, but which direction the accelerations

come in, longitudinally or vertically, appears to make little difference as

far as the pilot opinion is concerned.

TABLE 4

PILOT COMMENTARY, SINGLE-AXIS TRACKING EXPERIMENT

In the pedal tasks, both pilots are somewhat disturbed by the lateral

motion and, further, the task is regarded as less real, or more difficult,

than the centerstick task. JK comments that the lateral motion causes his

head to move and therefore reduces his ability to fixate on the vertical

needle. In short there is relatively little difference, fixed-base to

moving-base; and the reason apparently is that the lateral motion itself

is more disturbing or inhibiting than it is beneficial.

2. Tracking Performeance

Next, consider the. two subjects' performance, Fig. 2, as indicated by

the standard deviation of the motion variable (X) on the one hand arnd the

measured YpYc crossover frequency, wc, from the describing function analysis

on the other. These results represent only the last two runs (three in the

TR-1 01 4-2

CONFIG. EF JK

Lag is much more apparent Task less difficult with
S in fixed base condition. motion; tend to disregard

LON .Prefer moving base, but can- motion.

VER not see much difference between VER seems more real - get
LON and VER. a pitching sensation, perhaps

because I strain forward.

Side-to-side movement is Motion is better with
P distmurbing. Pedal task is more centerstick tasks. Rocking of
LAT difficult to learn than stick my head screws up my lateral

task. control. Task may be tougher
with motion.
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case of LON and LAT configurations) which were run at a higher gain,

K
c
= 3.96 cm/sec2 (display) per cm (control deflection), and also represent

a higher level of training. The data show, for EF in the centerstick task,

that motion improves performance, as signified by the reduction of aX and

the increase in wc. This improvement is significant at better than the

1% level (F test for equality of variances). There is a relatively small

difference between the longitudinal and vertical motion cases, which tends

to confirm what the pilot had to say about the task. JK's performance was

in general better than EF's, however he showed a lesser degree of improve-

ment (significant at the 10% level), going from fixed base to moving base

for the centerstick tasks.

Now consider the lateral task performance exhibited in this figure.

Although there is an improvement in performance on the part of both pilots,

the improvement is relatively small and no significance can be established.

The crossover frequencies change a relatively small amount and, for JK, it

goes down with motion, an apparent inconsistency since his performance

improves. The explanation in this instance is that the coherence, as

measured by the ratio between the correlated (with the disturbance, Xd)

and total power in the X signal, is increased in the LAT configuration by

an amount more than sufficient to offset the decreased bandwidth as indicated

by wc.

3. Describing Functions

Perhaps the most important data from this experiment are the describing

function results. Figure 3 illustrates -these open-loop describing functions

for the centerstick tasks. It is clear that the crossover model holds for

these data as the gain characteristics show crossover at a slope of -20 dB/decade

for both subjects. The task is difficult: gain margins vary between 2 and

6 dB; phase margins between 10 and 30 deg.

The most apparent differences between the fixed and moving base data

are the reduction in high frequency (at 6.28 rad/sec) lag, moving base (by

about 120 deg, EF; 60 to 80 deg, JK) and the improved gain and phase margins,

moving base (by about 2.5 dB and 8 deg). The pilot's effective time delay

has been significantly reduced in the moving base cases, and for EF there is
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a substantial improvement in crossover frequency as already noted in Fig. 2.

On the other hand, there are only slight differences between the two moving

base conditions for either subject.

Comparing subjects, Fig. 3 shows that EF gets more benefit out of the

linear motion than does JK. However both subjects show closely comparable

data moving base - the major difference between the two subjects lies in

their fixed base data.

No firm conclusions can be drawn from the low frequency data, i.e., the

lowest two frequencies in Fig. 3. The measurements at these frequencies

were quite noisy because of the very low signal levels. The data points

shown at the two lowest frequencies represent a grand average of all the

runs for a particular subject and configuration, while the highest three

data points represent only the last two or three runs.

The moving base data are not incompatible with current models (e.g.,

Ref. 8) of the dynamic response of the composite linear proprioception

senses (lps) if it is assumed that these cues are dominant at high fre-

-auenc:es. -A hypothesized high -fjrpn Cr-r novel i -then drn *

YpYc fit= s+ YPs (2)

where T = 0.2 sec, Kp is adjusted for the best fit of the amplitude data

for each subject, and Ylps is based upon the data of Ref. 8. These data

suggest a phase characteristic equivalent to first order lag with a break

frequency, 1/T = 1.5 rad/sec, and a gain characteristic which falls off

at -6 dB/decade (i.e., X- 0 3 ). The resultant fit using the actual Ref. 8

data is shown by the + symbols in Fig. 3.

The data for the pedal tasks are shown in Fig. 4, and the same qualifying

remarks concerning the two lowest frequencies apply. Here the fixed base

versus moving base differences are substantially less than in Fig. 3. In

particular, only the lag at the highest frequency shows a substantial improve-

ment, moving base (by about 45 deg, JK; by almost 140 deg, EF'.). Again, the

intersubject differences are small in the moving base case. The crossover

*The s2 term in the controlled element is eliminated because the
otoliths sense acceleration.
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frequencies for these tasks are less than for the centerstick tasks while

the gain and phase margins are comparable. This bears out the remarks con-

cerning the inherent difficulty of the pedal task (Table 4). The + symbols

in Fig. 4 represent a linear proprioception senses model fit as in Fig. 3,

only here T = 0.25 sec.

4. Summary and Conclusions

There are four major results from the foregoing material (additional

information concerning learning trends is contained in Appendix C). The

first of these has to do with dominance of motion effects. Pilot commentary,

performance, and measured describing functions all show a substantial

improvement, moving base, in the centerstick tasks; less so in the pedal

tasks. The major effect is to reduce the pilot's effective time delay - in

this respect the data resemble results obtained in attitude control tasks

(c.f., Ref. 1) when going from fixed to moving base.

Secondly, subject differences are important. EF is more relaxed,

while JK is more intent. JK comments, for example, that his head bobs up

and down in the VER configuration because he strains forward to see the

display better. This difference in style is apparent in the better perform-

ance, increased crossover frequencies, and generally smaller gain and phase

margins exhibited by JK relative to EFo

Thirdly, the data show that the effective acceleration thresholds in

this task are relatively low. The root mean square acceleration ranges

between 0.04 and 0.06 g. Since the pilots are using these signals effec-

tively as indicated by the fixed base/moving base differences, the effective

threshold lies near this level or lower. Physiological measurements of

this threshold (c.f., Ref. 9) are around 0.01 g, vertically (in a 1 g field)

and somewhat less when measured longitudinally or laterally. The result is

therefore compatible with these physiological measures.

Finally, the data indicate no substantial difference due to the direc-

tion of the acceleration in the pilot's ability to respond to this cue in

a tracking task. Certainly no substantial vertical/longitudinal differences

are indicated even though bobweight effects plus a presumed lower accelera-

tion threshold, longitudinally, could contribute to improved performance

TR-1014-2 19
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in the LON configuration relative to VER. Such differences which do exist

(see EF's data in Fig. 3) are substantially less than motion versus no

motiono

No comparison can be made with the lateral direction. Substantial

differences in task (primarily in using pedals), the lack of lateral

restraint, and (suggested by pilot commentary) extraneous lateral acce-

lerations may all contribute to the relatively small (and statistically

insignificant) performance improvements, fixed to moving base. The pilots

both note some differences in the lateral acceleration sensation as a

function of cab position on the tower, suggesting the p'resence of "noise"

in the acceleration "signal" when moving laterally.

There are three major conclusions to be drawn from these data:

0 Low level linear acceleration cues can be effectively
used by pilots to improve performance in tracking
taskso

* Pilot sensitivity to these cues is approximately
the same for the fore-and-aft and vertical directions,

P lets may vary greatly inl their a.i ... to utilize
the linear motion cues.

The first of these is significant because in the past there have been

doubts as to the utility of purely linear motion cues in continuous tracking

tasks. The results here are unambiguous. The second conclusion is quali-

fied by the magnitude of the linear accelerations used in this experiment-

the rms levels are roughly five times as large as physiological measurements

of linear acceleration threshold. The result is therefore not unexpected.

At lower levels of acceleration, one would expect the overall benefits of

motion to be lessened and the directional differences (if any) to be rela-

tively increased. The final conclusion is to be expected on the basis of

past experimentation with motion cues by a number of investigators.
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SECTION III

IFR TRACKING EXPERIMENT

A. EXPERLMENT DESCRIPTION

As indicated in the Introduction, Section I, the primary purpose of

this experiment was to shed some light on questions raised by the Phase I

experimental results. These results are summarized in Section I and des-

cribed in more detail in Appendix B. Briefly, the questions are as

follows:

o Do inhibition or distraction effects associated
primarily with the lateral similator motion
have a detrimental effect on pilot-vehicle per-
formance?

. Is display sensitivity (specifically, the ILS)
an important factor in the measured pilot-vehicle
performance?

The first question was raised by the observation that motion tended to

deteriorate performance. This, coupled with pilot commentary concerning the

simulator motion and concern with hitting the motion limits suggested that

the experimental situation was such that motion did more harm than good.

The second question refers to the fact that the ILS needle velocities are

so low as to preclude the pilot's direct perception of needle rate.

Five experimental configurations were used in the IFR tracking experi-

ment to answer these questions. These are listed in Table 5. The first

two were intended to repeat the Phase I experiment, thereby providing a

basis of comparison for the effects of the remaining three configurations.

(There were some small changes from Phase I; specifically, the slip indicator

sensitivity was increased and the rudder pedal forces decreased - both in

response to pilot complaints during Phase I.) The last three configurations

were meant to reveal the effects of needle sensitivity, inhibition or

distraction caused by lateral motion, and the combined effect of both. In

all cases, there was no lateral/directional stability augmentation system

(SAS) in the simulated aircraft.
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TABLE 5

CONFIGURATION SUMWARY, IFR TRACKING EXPERIMENT

SYMBOL DEFINITION

FB Fixed Base

MB Moving Base

MB + N Moving Base with ILS needle sensitivity doubled

MB - L Moving Base with no Lateral (p, V, and y) motion

MB + N - L Combination of the preceding two conditions

The pilot's task in this experiment was the same as in Phase I - to

minimize glide slope and localizer errors while conducting an IFR approach.

The situation was configured to allow measurement of time averaged (over

100 sec) means and variances of several motion variables, and of the pilot-

vehicle describing function in the altitude control task.

The subject in this experiment was the same NASA research pilot who had

participated in the Phase I experiment. He is a former USN pilot with some

1600 hrs in single engine jets. His 2000 hrs flight experience as a research

pilot is primarily in single engine jet aircraft but also includes saome jet

transport and propeller driven time, the latter including the Twin Otter and

Buffalo aircraft types. He has extensive simulator experience on a variety

of moving base simulators at ARC.

The initial warmup and training runs were made with and without disturb-

ances, and with and without the lateral/directional SAS. Following these,

the protocol typically consisted of an hour-long session of ten runs (some-

times one or two more if data was lost for one reason or another) during

which the subject was exposed to each of the five configurations twice. He

was informed of the changes in each case prior to the run.
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B. EXPERIMENTAL RESULTS

1. Tracking Performance

First, consider some of the performance data as represented by the

standard deviation of glide slope error. This is plotted as a function of

run number for each of the five configurations tested in Fig. 5. The

asterisk next to the data point for Run 28 identifies an abnormally large

error which is attributed to a malfunction in the input disturbance generator,

i.e., the describing function analyzer (DFA). Disregarding this data point,

it is clear that learning is taking place, especially for those configura-

tions where the needle sensitivity was at its normal value (FB, MB, and MB - L).

Figure 6 shows similar data, in this instance, the localizer error. There

is a large amount of scatter, particularly in the FB and MB cases. The

asterisks by several of the data points refer to runs where the pilot noted

that the attitude ball was sticking in yaw; however these comments do not

correlate with localizer performance. There were a number of occasions

when the pilot stated that the ball was sticking often enough that he wasn't

going to mention it -- it would have been too much of a distraction to

verbalize.

Figures 5 and 6 provide a good indication of the data scatter in the

experimental results. There are several contributing factors. First,

there is a definite learning trend in the glide slope data (Fig. 5). A

second factor is a defect in the experimental setup - a faulty attitude

ball (Fig. 6). The lateral data is too variable for conclusive results and

will not be considered any further except to note that task difficulties here

(in the lateral task) probably contribute to the variability in the measured

longitudinal task performance.

A third factor contributing to the data scatter is the generally low

signal-to-noise ratio is the altitude control task. The describing function

measurements (to be discussed beJow) indicate low coherence, i.e., less than

a third of the error (in this case, the altitude error) power is correlated

with the known and fixed input disturbance. Thus many runs (data points)

at an asymptotic level on the learning curve are needed to establish signi-

ficance in the effects observed.
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2. Describing Functions

The describing function results form the next body of data to be

considered. The describing function measured was YphYc, that is, the

pilot-vehicle describing function in the altitude control task. Yc is

the effective altitude response of the AWJSPA with the inner attitude and

airspeed loops closed by the pilot. The method of making these measurements

is discussed in Appendix A and schematically indicated in Fig. A-9.

The describing function data are valid only for the last four runs

for each of the Table 5 configurations. The earlier data are disregarded

because of a malfunction in the DFA which was identified and corrected

only for these last several runs.

The run-by-run describing function measurements for each configuration

were subject to much the same scatter as the corresponding performance data.

For example, the apparent gain in the region near crossover varied over a

range of 3 to 18 dB, typically about 8 dB a little more at the lowest

measurement frequency (w = 0.1886 rad/sec) and somewhat less at the next

two higher frequencies (a = 0.503, 1.257 rad/sec). The range of gain data

was somewhat larger for the FB and MB cases. The phase data in this fre-

quency region were also highly variable. Here the range was 15 to 170 deg,

typically about 60 deg. The phase data range was smallest for the configu-

rations with increased needle sensitivity (MB + N and MB + N - L).

In view of the foregoing, it can be appreciated that the averaged

(treating the four runs for each configuration as one long rmun) describing

function data shown in Fig. 7 and listed in Table 6 for each of the five

experimental configurations are subject to considerable uncertainty.

Nevertheless, the dominant trends in these data are judged to be valid.

The top row shows the ratio between a and ah. This ratio approximates

the bandwidth in the altitude control task and is determined from the

averaged (over the last four runs) performance measures. It is shown with

the describing function data because it adds a confirming note to the

measured value of the crossover frequency, wce which is interpolated from

a scatter of data points. In particular, for the MB case, there is one

wild point which renders it difficult to establish what the crossover
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TABLE 6

AVERAGED DESCRIBING FUNCTION DATA,
IFR TRACKING EXPERIMENT

frequency is from the measured describing function. The first two rows of

data, that is, Jh/oh and xc are in reasonable correspondence and show very

interesting changes in going from one configuration to the next.

Tie crossover frequeicy is St folr those cases where he leedle

sensitivity has been increased, i.e., in the MB + N and MB + N - L cases.

The remaining cases (FB, MB, and MB - L) all show lower crossover frequencies.

When the needle sensitivity is at its normal value, the crossover frequency

is between 0.13 and 0.16 rad/sec. At high needle sensitivity, the crossover

frequency ranges between 0.25 and 0.30 rad/sec. Along with these changes

there are equivalent changes in the measured gain and phase margins (km and

cm). For cases with increased needle sensitivity, there are lower gain and

phase margins. The pilot-vehicle gain has gone up by 4 to 5 dB in the region

of crossover. This compares with the 6 dB increase in the needle sensitivity.

The gain increase is in contrast to the more usual experience in instances

where the display or controller sensitivity is changed and the pilot vehicle

gain typically remains unchanged. The gain increasing in the present

instance suggests the operation of a threshold-like effect in the pilot.

The pilot did not like the increased gain situation. The data show

that his control activity increased while his altitude performance tended

to improve only slightly - his display (ILS) motion amplitude therefore

TR-1 014-2

PARAMETER CONFIGURATION

SYMBOL UNITS FB MB MB + N MB - L MB + N - L

oG/ah sec_1 0.230 0.199 0.278 0.206 0.299

Wc sec
-

1

0.1 6 0.16 0.30 0.13 0.25

km dB 15 12 7 11 8

Pm deg 90 90 50 70 50

p2 0.230 0.137 0.198 0.248 0.302
l - 0.5 0.57
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increased. The pilot works harder but it doesn't reduce the error that

he sees, so his opinion deteriorates.

The last row of figures in Table 6.is the measured value of p2 , the

ratio between that amount of output (altitude) power which is correlated

with the input disturbance and the total output power. It indicates how

closely related the output signal is to the disturbance. Lower correla-

tion (smaller p2 ) indicates a greater percentage of pilot remnant or

noise from other sources in the signal. It also implies a greater degree

of uncertainty in the measured describing function because the measurement

technique cannot distinguish between signal and noise at the measurement

frequencies. Where p2 is relatively large, the remnant (or noise) is

considerably less and the measured describing functions are subject to less

measurement error. Using p2 as a figure of merit in comparing configurations

is strictly valid only where the task dynamics are the same, i.e., where the

crossover frequencies are substantially the same. Clearly, the data of

Table 6 show the remnant to be significant - p2 is quite low for all confi-

gurations.

The lTable b data show the crossover frequencies to be reiatively high

for the MB + N and MB + N - L cases. But the p2 in the second instance

is 50% greater than the first. Since the performance is approximately

constant, this difference implies somewhat improved task dynamics for

MB + N (reasonable, since the presence of lateral motion, a stabilizing

influence on the lateral control task, would be expected to allow the pilot

to concentrate more on the longitudinal task) with increased remnant. A

similar result holds when comparing the low wc cases, MB and MB - L; the

p2 in the latter case is 80% greater than the former. The p2 in the FB

configuration is almost 70% greater than in MB. The common factor tying

all these examples together is a larger proportion of remnant where lateral

motion cues are present, lower otherwise. In short, the inhibition/distraction

effects of the lateral motion about cancel the beneficial effects of its

presence - the performance is essentially unchanged. This is borne out by

the pilot's remarks to the effect that there is "little difference" in the

moving base cases between the presence or absence of the lateral motion

cues. And this is in a situation where motion cues could help because of

the unstable roll task dynamics (a divergent spiral mode) without SAS.
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3. Summary and Conclusions

Perhaps the most important result of the experiment is a negative one,

that is, that motion effects are relatively minor, at least on the longitu-

dinal control task. In comparing the results for FB with MB - L (only

longitudinal cues are added) or with MB (all motion present) we note minor

and inconsistent performance changes. There is a tendency for the pitch

attitude control "bandwidth," aq/ae, to decrease with motion and the pilot

feels that FB is, "perhaps a little harder to fly," than MB. (Appendix C

identifies the trends exhibited by the performance data noted here.)

Secondly, the data clearly show that increased ILS needle sensitivity

dominates the results. In particular, the pilot's control activity and

pitch rates increase and his altitude errors decrease. The describing

function data show larger crossover frequencies and a tendency for decreased

remnant. The pilot notes a difference in task difficulty, feeling that the

vehicle is, "harder to fly, particularly in the lateral task," and for

reasons noted earlier - larger apparent (displayed) errors and greater

stick activity.

Thirdly, the data show that the lateral motion is distracting or inhibit-

ing. When lateral motion is removed, there are only slight performance

improvements and the pilot sees, "little difference," between the conditions.

But the remnant or noise in the longitudinal task decreases. Overall, the

results suggest that the benefits of lateral motion ($, 8, and y degrees of

simulator freedom) are balanced by the inhibition/distraction effects. If these

effects weren't present, it is possible that the presence of lateral motion

cues could result in improved performance over that exhibited here.

There are two major conclusions to be drawn from the results of the

IFR tracking experiment:

o Motion cues primarily affected attitude control and
had relatively little influence on path performance.

0 Display scaling effects were of greater importance
than motion effects with regard to path performance.

The first is in accord with pre-experimental predictions for the AWJSRA

(Table B-2), while the second directly answers one of the questions raised

by the results of the Phase I experimentation.
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As noted earlier, a strong case can be made for the presence of

"inhibition/distraction" effects (as described in the Introduction on

page 5) in the data obtained. This argument is based primarily upon

measures of error signal coherence (correlation with the input distur-

bance) obtained from describing function measurements. However, the

low coherence and the small number of measurements coupled with a rela-

tively low measurement accuracy suggest caution in drawing this con-

clusion. If valid, there are important implications with regard to the

results obtainable from motion simulation. The data suggest that motion

benefits can be negated by these effects, leading to erroneous conclusions

regarding the benefits of motion cues. The present experiment is not

exempted from this reservation.
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SECTION IV

VFR TRACKING EXPERIMENT

A. EXPERIMET DESCRIPTION

The basic purpose of this experiment was, broadly speaking, to determine

the effects of motion cues in a simulated VFR task. Its specific objectives

were identical with those of the program as a whole (see Section I).

In configuring the experiment, there was little experience from the

Phase I experiment to draw upon. The task selection was motivated, in

part, by the desire for a situation where the anticipated results could be

obtained within the scheduled test period. This criterion eliminated

experimental situations requiring a great many repeat runs to establish

data trends. Specifically, a flare-to-touchdown task (i.e., the VFR portion

of the Phase I experiment) was felt inappropriate because of the need for

many runs to establish a basis for performance comparison. This would have

been a time-varying task so only ensemble-averaging and not time-averaging

could have been used. With a stationary task one s, nn time average and

therefore obtain results with many fewer runs.

The task selected was that of low altitude, level flight above and along

a long runway in the presence of light turbulence. The aircraft was the

AWJSRA trimmed out for level flight at 30.5 m/sec and operating with the

lateral and directional SAS on. The simulation setup is described in

Appendix A.

Seven configurations of this task were flown as noted in Table 7. These

were oriented toward specific objectives, as follows: First, to determine

the general effects of motion, a fixed base (FB) and a nominal moving base

(2) configuration were included. Second, to define tradeoffs in configuring

coordinated washout configurations, a spectrum of such washouts was included

(Configurations 1, 2, 3, and 4). These are all characterized by scale

factors applied to the magnitudes of the computed accelerations and vehicle

rates, and washout break frequencies, which are chosen to maintain motion
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within the linear travel limits of the simulator. In going from Configu-

ration 1 to 4, one goes from attenuated motion with low residual tilt rates

to full scale motion with large residual tilt rates.

Finally, the vertical and longitudinal cues were separately deleted from

the nominal washout configuration to determine whether or not these cues

contributed to the task. In the latter case, the pitch rate cues were also

deleted to remove the residual tilt component of the sensed longitudinal

accelerations.

The subjects in this experiment were the same -two who participated in

the single-axis tracking experiment (Section II). After a lengthy train-

ing period to establish a stable performance level, the protocol

called for exposure to the seven configurations in random order (and

unidentified to the subjects except for FB) in experimental sessions

generally lasting an hour or more (14 runs). The metrics were the same as

in the IFR tracking experiment: pilot commentary, measured performance

(means and variances of several motion variables) and describing functions

in the altitude control task.

B. EXPERINTWAL RESULTS

The performance, as measured by the variances in altitude, h, and lineup

(or lateral deviation from the runway centerline), y, for the two subjects

for the fixed base (FB) and nominal moving base (2) configurations, serves

as an introduction to the nature of the data obtained. The run-by-run

performances for the last six runs in each instance is illustrated in

Fig. 8 - this represents a well trained situation where the subjects

should be close to an asymptotic, well-trained performance level.

Considering the level of training, there is considerable scatter

exhibited in these data, somewhat more for EF than for JK; and perhaps some-

what more for Configuration No. 2 than FB. The subject commented on a

"jerky" visual display on run 212 which may have contributed to poor lineup

performance; but for run 272 there is no ready explanation.

Figure 8 also shows that the fixed base-moving base differences are

relatively small with the differences perhaps being a little greater for

lineup - the errors decrease slightly for the moving base situation.
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Subject differences also show up with JK's altitude performance being

better than EF's. Overall, the example data of Fig. 8 suggest an experi-

mental situation wherein configuration differences are small and the

measurements noisy, that is, subject to considerable scatter.

1. Pilot Commentary and Opinion

The example of Fig. 8 suggests that attention be focussed elsewhere in

trying to assess differences among the seven configurations used in this

experiment. Table 8 presents a compilation of the pertinent commentary

as a function of configuration and subject. In the fixed base configura-

tion the pilots apparently miss the lateral cues in that they have a tendency

to overcontrol; they feel that the task is somewhat more difficult without

the motion cues. The next configuration listed is the so-called base line,

or nominal moving base configuration, No. 2. This was quite similar to the

configuration used in the IFR tracking experiment, where the longitudinal

scale factor was 0.5 instead of 1.0. The comment is that the configuration

is more realistic than Configurations 3 or 4, but that there is some jerki-

ness and rumble in the simulator. The reason for their noting the .!.mu]lt.or

jerkiness and rumble is probably because themagnitude of simulator motion

in the longitudinal and vertical directions is greater for this configura-

tion than for any of the others.

The next configuration listed in Table 8 is the base line configuration,

No. 2, without any vertical acceleration cues. Here EF says that the motion

is artificial and that altitude control is more difficult. However he is

not able to identify the fact that the vertical motion is missing. On the

other hand, JK says that, "I have a smoother ride," the implication being

that he actually likes this configuration a little bit better than No. 2.

With the fourth configuration on the list, Configuration No. 2 without any

pitch cue or longitudinal acceleration, EF states that the configuration is

similar to No. 2 but slightly easier to fly, and it had better motion and

a good pitch response. The only plausible explanation for this comment is

that rather than have a limited amount of pitch rate cue and along with it

a false residual tilt cue, he would rather be entirely fixed base with

respect to these cues. The interpretation is that he is disturbed by the
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TABLE 8

PILOT COMMENTARY, VFR TRACKING EXPERD1ENT

CONFIGURATION EF JK

Stable and easy to control Have a tendency to over-
| FB with low level of disturbances. control, especially laterally.

Have a tendency to overcontrol Prefer moving base - lateral
in roll. task more difficult without

motion.

More realistic than 3 or 4 Less lateral motion than 3
2 with less movement (except or 4. Feels jerky - has some

vertically). Notice simulator vibration and shudder. Like
jerkiness and rumble. pitch response to diverter -

hanging in straps.

Motion feels artificial rela- Motion feels slightly attenuated
2 tive to 2 but with similar relative to 2 with smoother

(no Y) jerkiness. Altitude control ride.
more difficult.

Similar to 2 hut slightly Very poor motion, almost like
2 easier to fly - has better fixed base - has no pitch

(no ,) motion and good pitch response. response to diverter, and I
_~no x_ good pitch response. lose feel for diverter corrections.

Less lateral response, minimal Less motion than I like,
vertical disturbance and a particularly pitch response

1 tendency to balloon, but to diverter. More difficult
relatively easy to fly. Poor to fly than 2.
pitch and 7 cues.

Exaggerated pitch response Like this configuration,
to diverter changes and more especially pitch response to

3 responsive laterally. Motion diverter changes. Best motion
is more realistic than 4. and control response of all

configurations.

Angular cues are confusing Has good pitch response to
and unreal. Seems less stable diverter but is unrealistic.

4 in all axes - lurches and is Lateral motion is a hindrance
jerky in response to both and a distraction. Motion
gusts and control inputs. seems abrupt.
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residual tilt. By contrast, JK misses the residual tilt cue and the pitch

motion, and says that he loses his feel for diverter corrections. In effect,

he misses the longitudinal sensations of acceleration which he would other-

wise get and complains strongly about it. In the other moving base configu-

rations he continually refers (favorably or otherwise) to the response of

the simulator to the diverter corrections.

The fifth configuration listed is Configuration No. 1. Here both pilots

make comments which suggest that there is less motion sensation than they

would prefer. This is reasonable, as this configuration has the motion

scale factors set at their lowest levels. However, EF says it is relatively

easy to fly. JK complains about not having sufficient response to the

diverter. For Configurations 3 and 4, there is considerable residual tilt

to judge by the comments. The first pilot, EF, dislikes this quite a bit,

but the second pilot, JK, rather enjoys it (at least for Configuration No. 3).

JK thinks No. 3 is best of all. However, even he objects to the unreal pitch

motion cues when they get large enough, as indicated by his comment on

Configuration No. 4.

In an attempt to quantify this commentary, a brief-sub-experiment was

conducted in which the two subject pilots were asked to rate the seven

configurations on an arbitrary scale. The methodology was as follows: A

form was prepared whereon they were instructed to rate the seven configura-

tions on an arbitrary scale from 1 (best) to 10 (worst) on two bases of

judgment; first, performance and second, feel or realism. Here it was

thought that there might be a difference between the two ratings - even

though the cues are unrealistic, the subjects might be able to use them to

improve their performance. The configurations were presented to them in

random order except that No. 2 was first and FB last; and they were not

identified to the subject. They were allowed to have repeat runs at their

discretion to crystalize their impressions. JK took more advantage of this,

asking for repeats on No. 2 to assist him in "calibrating" his ratings.

The results of this brief experiment are shown in Fig. 9. For JK the

results correlate closely with his earlier commentary. In particular, the

chart on the bottom left shows that he regards Configuration No. 3 as being

optimum relative to the other motion configurations. The chart on the lower
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right suggests a considerable deterioration for fixed base (FB) and a

similar deterioration when the longitudinal acceleration cues are removed.

However, for EF in the top set of charts there appears to be little corre-

lation with his commentary. For example, the major thing to note from the

left hand chart is that there is a considerable deterioration in the realism

or feel for Configuration No. 4. The rating for No. 1 may correlate with

his comment, "easy to fly." No. 2 suffers from vibration. But No. 3

earned poor remarks (Table 7) because of residual tilt - in Fig. 10 it

appears to be better than No. 2. In this particular chart there isn't a

strong correlation between his quantitative opinion and his commentary.

For the chart on the upper right, the correlation is a little better. There

is a considerable improvement, FB, which is not directly suggested by his

commentary and certainly runs at variance with what might be expected or

demonstrated - see Fig. 8. However, there is a deterioration in his opinion

when vertical motion is removed. Further, the improvement in his performance

rating, going from Configuration No. 2 to Configuration No. 2 without any

longitudinal or pitch motion cues may be correlated with the fact that the

latter configuration has no residual tilt cue.

Figure 9 and Table 8 suggest that there are considerable differences

between the subjects. Some of these are listed in Table 9.

TABLE 9

SUBJECT DIFFERENCES, VFR TRACKING EXPERIMENT

TR-1 014-2

EF JK

1. Former USMC helicopter pilot. 1. Former USN fighter pilot.

2. "Relaxed" flyer and more run- 2. "Intense" pilot - says he
to-run variation in perform- strains forward to look at
ance. Somewhat poorer per- instruments.
formance.

3. Rarely uses pedal. 3. Uses pedals for heading control.

4. Typically flies about 1 .5 kt 4. Typically flies about 3 kt fast.
fast.

5. Claims to fly u, e -be)-8 5. No comment on technique.
h -v- v.

6. Uses vertical acceleration 6. Uses longitudinal acceleration
cue (?) cue (?)
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First of all, one pilot is a former helicopter pilot, the other a former

conventional aircraft pilot. There are differences in their flying styles

and a common tendency to fly a little bit fast, thereby tending to improve

the altitude responses of the aircraft. A significant comment is EF's

claim to fly both airspeed (u) and attitude (0) to the column (5c) and

altitude (h) to the diverter (v). This is a typical helicopter technique.

The last statement in Table 9 refers to the suggestion that EF uses the

vertical acceleration cue. This is correlated with sensations that are

familiar to a helicopter pilot. EF uses the diverter and gets a vertical

acceleration from it, at least eventually -- this correlates with collective

usage in a helicopter. On the other hand, for a Navy jet pilot, there are

very few things more comforting than a substantial increase in longitudinal

acceleration when the throttles are moved to the firewall. This is analogous

to the situation with the AWJSRA. When the thrust diverters are moved,

there is a substantial change in the longitudinal acceleration of the airplane

for the flight condition being flown. When this cue is removed, JK does not

like it; when present, he does like it, even though he gets some distorted

pitch cues to go along with it. To summarize, one subject is a helicopter

pilot, bhe ouher & conventional airplane pilot; the helicopter pilot tends

to prefer helicopter cues, that is, vertical motions in response to the

"anxillary" control (the thrust diverter); the conventional aircraft pilot

tends to prefer the longitudinal acceleration response to the diverter -

similar, in his words, to the response obtained with a flap control.

2. Performance and Describing Function Data

Past experience, e.g., the Phase I results, would suggest that motion

differences will be most evident in the performance data pertinent to the

attitude control task. For example, consider the averaged attitude rate

data of Fig. 10. These data pertain to the last several runs (see

Appendix C for a data listing) and no attempt has been made to edit the

data (for example, Runs 212 and 272, suspect points in Fig. 9, are

included).

The data in the two left hand charts would suggest that within the

spectrum of washout configurations, No. 2 is optimum in some sense - the

standard deviations of both yaw and roll rates are at minimums. The pitch
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rates are at a minimum for EF, a maximum for JK, perhaps a further indica-

tion of style differences. Considering the right hand charts, the data

show the moving base condition to result in a reduction in the attitude

rates for both subjects; however, removing the vertical or longitudinal

cue has a relatively small effect.

The data of Fig. 11 present a more clouded picture, particularly

when considering the scatter in the data making up the averages. Thus,

for EF, the upper left hand chart in Fig. 11 suggests optimum performance

for Configuration No. 2 or No. 3 - a picture which would be altered if

certain "wild points" were deleted. For JK, whose performance tends to be

more consistent, the data do not suggest any clear-cut optimum. In the

right hand charts, however, even edited data show a performance decrement

in ah for EF when the vertical acceleration cue is removed - his altitude

performance with this configuration was consistently below the average for

all configurations. For JK, the small performance decrement in ah shown for

the case where longitudinal acceleration (and pitch rate) cues are removed

tends to confirm his commentary.

.nly sall diffe-rences are exhiibited in the describing function data.

These data were measured in the same way as in the IFR experiment. Figure 12

compares fixed versus moving base altitude describing function data for

the two subjects (a complete listing is given in Appendix C). Other than

a slight reduction in the phase lag for the moving base case for EF, there

is little to distinguish these data. The coherence (p2) for these data is

low, ranging between 0.15 and 0.4 for all configurations and both subjects.

Remnant dominates the altitude error signal and degrades the measurement

accuracy.

3. Summary and Conclusions

........ There are six-significant mesults-from this-experiment. The first and

most obvious result is that differences between subjects dominate the data.

One subject, EF, apparently uses a vertical acceleration cue, to judge by

both his commentary and performance. He is also relatively sensitive to

the anomolous rates resulting from residual tilt terms in the washout scheme

used. The other subject, JK, may use longitudinal acceleration cues - at

least he is vocal about them - and is relatively more tolerant of residual
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tilt rates. These differences apparently correlate with their backgrounds

of heavy helicopter and Navy jet experience, respectively.

Second, with regard to establishing the best compromise coordinated

washout configuration, No. 2 (washout frequency of O.5 rad/sec) is apparently

the best for this experimental task. There is too little motion on No. 1

(0.35 rad/sec washout frequency), and too much residual tilt on Nos. 3 and 4

(washout frequencies of 0.75 and 1.0 rad/sec). Even so, there are indications

in the commentary that one of the subjects, EF, finds the amount of residual

tilt with Configuration No. 2 disturbing.

Thirdly, the data show that attitude control is most heavily influenced

by fixed base/moving base differences. Overall performance changes, and

changes in the describing function data, are insignificant. The dominant

changes are in the "bandwidth" (e.g., aop/X) of the attitude control tasks,

especially in roll. It is possible, bearing in mind the results of

Section III, that inhibition or distraction effects may detract from the

benefits of the motion cues.

Appendix C points out the fourth and fifth results, viz. that there is

no apparent correlation between the subject:s individual angular motion

thresholds and performance (the subject with the higher thresholds generally

has the lower attitude rates); and that the effective angular rate thres-

holds are relatively low - lower than the estimates of Ref. 1. These

results must be qualified in that residual tilt rates may confuse the data.

However JK is most sensitive to pitch rate per his measured (on the MCRD)

perceptual threshold (Appendix C) yet is most tolerant of residual tilt in

pitch. The subjects both achieve improved roll rate control with the

presence of motion even though the root mean square (or standard deviation)

of the cab roll rates is as low as 19 mr/sec. Subject commentary is also

revealing: JK said the FB configuration was, "almost like IFR," implying

that motion permitted a more VTFR-like technique. Rates this low can

improve attitude control - by the same token, anomolous rates this high

(i.e., residual tilt rates) can confuse the pilot.

Finally, pilot commentary at the outset of this experiment was that the

simulated visual scene provides attitude and lineup cues - both subjects

relied on instrument scanning for altitude rate, altitude, and airspeed
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cues. Preliminary experimentation suggested that sensitivity to lineup

(more precisely, lateral deviation) errors was inversely proportional to

altitude as one might expect. That the visual scene replaces the attitude

ball as an attitude reference is confirmed by pilot commentary to the

effect that they, "wouldn't miss the attitude ball." To do this, the

visual scene must move in a realistic fashion; jerkiness is not permissible.

The major conclusions to be obtained from this experiment are two-

fold:

* Motion cues primarily affected attitude control
and had relatively little influence on path
performance.

* With coordinated washout circuits there was a scale
factor/break frequency trade-off. Residual tilt
effects were excessive when the break frequency was
too high.

The first is the same conclusion reached in the IFR tracking experiment

(Section III) and is similarly subject to the same reservations - inhibiting

or distracting effects arising out of the simulator's lateral motion may

obsire moot; an 1heref+tg on nerfoL-knce which rnpyr cf'+erTi.eP h-e ei dent,

The second conclusion is subject to pilot preferences and pertains only

to the tracking task context. To judge by the limited sample in this

experiment (two pilots) there is a wide variation in the "optimum" compro-

mise, depending (apparently) upon subject background. Subject sensitivity

to relatively low rates, as evidenced by the motion differences exhibited.

suggests that the tradeoff be in the direction of the lower residual tilt

rates.
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SECTION V

SUMMARY AID CONCLUDING REMARKS

The major results of this study lie in the general area of motion cue

effects on STOL (specifically the AWJSRA) approach simulations. The speci-

fic results relate to the utilization of linear acceleration cues, motion

threshold effects, and motion washout design. Inhibiting and distracting

effects of simulator motion constitute the major unknown factor in the

results. Intersubject differences were also important. Finally, there are

certain implications on STOL simulation design to be drawn from the results

of this study.

A. IMPORTANCE OF MOTION EFFECTS IN
STOL APPROACH SIMUIATIONS

The primary effect of motion cues in STOL approach is to alter the

attitude control performance. The most significant (i.e., largest) changes

when going from fixed-base to moving-base conditions lie in the pilot's

control activity, and the vehicle'-s angular rates and attitudes. For the

AWJSRA with stable attitude control dynamics, the effect is to decrease

the effective bandwidth, as indicated by the ratio of the standard deviations

of body axis rates to attitudes. This is true for both the IFR and 1FR

experiments in the pitch axis, and for the VFR experiment in roll. The

IFR experiment was run with no lateral or directional SAS, that is, with

unstable roll dynamics (a spiral divergence). In this instance, the roll

bandwidth, Op/aO, increased with the addition of motion cues.

Flight path performance, by contrast, was relatively little (and

inconsistently) affected by the presence or absence of motion cues in both

IFR and VFR situations. Lateral deviation control improved by approximately

ten percent, moving base, in both experiments (with differing roll dynamics)

but altitude or glide slope control deteriorates (IFR, by about 10%), remains

about the same (VFR, for subject JK), or improves (VFR, by about 10% for

Subject EF). The changes are not significant because they are small and

based upon limited data (5 to 8 runs per configuration tested).

These results (significant effects on attitude control, relatively

minor effects on path control) are generally in accord with past motion
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simulator experience in tasks of this nature. For example, the Ref. 4

results for a hovering VTOL with stable attitude dynamics (a considerably

more difficult task) were similarly inconsistent with regard to path (i.e.,

hovering position) control. Pre-experimental predictions for the current

experiment were correct insofar as minor (if any) improvements in glide

slope control with the addition of motion cues were expected.

In a qualitative sense, the addition of motion enhances the subject

pilot's impression of simulation "realism." In fact, indications are that

for some pilots (e.g., JK in the VFR tracking task) the motion need not be

realistic (in this instance, false pitch rate cues) to convey a favorable

impression. However this impression of realism can be severely compromised

by simulator artifacts such as noise, rumble, vibration, and (extremely

upsetting to the pilot) motion limiting.

B. UTILIZATION OF LINEAR MOTION CUES

The results of the single-axis tracking task experiment (Section II)

clearly demonstrate that linear motion cues can be used to improve tracking

task performance. In this experiment, the accelerations felt were nronor-

tional to the second time derivative of the displayed error and provided a

useful feedback.

In the VFR experiment, one subject (JK) commented favorably on the

correlation between diverter inputs and the longitudinal acceleration

experiences. Similar comments to the effect that the sensed acceleration

helps the pilot to gauge his control corrections (the diverter is a pure

friction control) were obtained in the Ad Hoc experiment of Appendix D.

The commentary suggests that linear acceleration cues can be effectively

utilized when closely related to control activity.

There is some evidence in the data that less closely correlated (with

control activity) linear acceleration cues can be used. When vertical

accelerations were deleted, EF's performance in the VFR tracking task

suffered, and his commentary noted the increased difficulty. This suggests,

that for some pilots, vertical acceleration cues are important to STOL

tracking performance. To others (e.g., JK) they are of little discernable

benefit. In short, utilization of linear acceleration cues in STOL simu-

lations is subject dependent.
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C. MOTION THRESHOLD EFFECTS

The results demonstrate, by the changes in attitude control produced,

that some pilots can utilize attitude rates having an rms level somewhat

lower than 20 mr/sec in a multi-axis tracking task. This figure is some-

what lower than what might be expected based upon perceptual measurements

using the Man Carrying Rotation Device and nominal values for time constants

associated with the washout of sensations of angular acceleration (see

Appendix C). The attitude performance achieved in this experiment does

not appear correlated with the individual subject's perceptual thresholds.

In fact, the apparent correlation is negative, suggesting that stylistic

differences were more important in this experiment than physiological

differences.

Linear accelerations having rms levels on the order of 0.05 g can be used

by subjects to improve performance, regardless of direction. This suggests

effective proprioceptive thresholds which are, at least to a first approxi-

mation, unaffected by the operating point (zero if longitudinal or lateral,

one g if vertical). This figure (0.05 g) is not incompatible with typical

values given (approximately 0.01 g) for perceptual thresholds (Ref. 8).

These results carry an obvious implication with regard to motion

fidelity in a moving base simulator. Anomolous rates, such as produced by

a coordinated washout scheme as used in these experiments, must be low

relative to the angular rates being simulated and should be less than the

pilot's effective threshold. If the current results are accepted as

indicative, anomalous rates greater than 20 mr/sec are too high, at least

in the context of STOL approach in light to moderate turbulence. In the

Ad Hoc experiment discussed in Appendix D, the residual tilt rates were

confusing to the pilots because they were correlated with the maneuvers

of the task and of a comparable magnitude to the rates being simulated -

there were no "masking" disturbances. In the VFR tracking experiment,

there were indications that the anomalous rates were disturbing, even in

the "optimum" washout, to one of the subjects. Clearly, residual tilt

rates must be very small.
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D. INHIBITING AND DISTRACTING FFEOTS OF MOTION

There is evidence in the describing function measurements taken in the

IFR tracking experiment and in the pilot commentary elsewhere, that there

are some aspects of the moving base simulator environment which are dis-

turbing to the pilot. These can be large enough to compromise his moving

base performance, thereby (perhaps) leading to erroneous results. The

pilots speak of rumnble, vibration, and noise in general; in particular,

they mention the combination of sounds which indicates large and rapid

lateral motion toward the travel limits. Contact with the motion limits

is a very upsetting experience; one pilot specifically indicated that it,

"was bound to affect," his control. In addition, there are apparently

extraneous accelerations associated with the lateral degree of simulator

freedom which may be due to twisting, or torsion, of the simulator tower.

Such accelerations compromise the fidelity of the lateral acceleration

dues and can presumably affect the pilot's response to these cues.

While the above remarks apply to the Six-Degrees-of-Freedom Motion

Simul.ator sneci-Pieally theyr shorld e interpreted as general re..ar.s as

well. If the pilot is distracted by artifacts in a simulator's motion or

concerned by the possibility of episodes of motion limiting, his behavior

can be affected to some extent. How much depends upon the subject, task,

and experimental situation, and constitutes an unknown factor in the

results obtained.

E. CONCL'UDING RAPXKS - STOL
nMEUTOR DESIGN IMPLICATIONS

At the outset of this program it was decided to use a motion washout

scheme incorporating residual tilt of the simulator's cab so as to retain

vehicle coordination (i.e., accurate reproduction of longitudinal and

lateral accelerations - residual tilt is of no help in simulating vertical

accelerations) throughout the low and intermediate frequency ranges. This

decision was based on the earlier results of Ref. 4 where the lack of coor-

dination provided a beneficial cue which the pilot would not get in flight,

and on the particular interest in the effects of linear motion cues in this

program. To keep the linear motions within the travel limits of the
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simulator, all motions were attenuated and the simulated disturbances

were relatively light.

If accurate (albeit attenuated) linear acceleration cues are to be

provided which the pilot can use in a continuous tracking situation, the

results of this experimental study imply very low linear motion washout

break frequencies (because residual tilt rates must be kept very low) and

therefore, large linear travel capabilities. The results of the earlier

study of Ref. 4 suggested that pilots can use utricular (and other proprio-

ceptive) cues in the frequency range near 1 rad/sec. The single axis

tracking experiment in the current program provided results confirming

this. Further, most outer loop, path control tasks in aircraft generally

have bandwidths less than 0.5 rad/sec. Since the pilots can use relatively

low level linear acceleration cues, it implies that the fidelity requirements

on these cues at these frequencies must be relatively high if the cues are

to be used in a closed loop sense.

Most current simulators cannot satisfy these requirements without

excessive residual tilt (exception: the FSAA at ARC in the lateral degree

of freedom) Tt i therefore not slrprising that results obtaine on these

simulators fail to show that linear accelerations are used by the subjects.

Even if the subject is predisposed to use linear acceleration cues, the

fidelity of the accelerations in the frequency range where they could be

important is relatively poor or, if relatively good, then confounded by

large residual tilt rates. In attempting to maximize utilization of the

limited linear travel in these simulators, one runs into (literally!) another

confounding factor - inhibiting the pilot because of concern with motion

limiting.

If, on the other hand, the purpose of the simulator is to provide only

an indication of the forces acting on the simulated aircraft, then rela-

tively rapid washouts can be used with limited travel capabilities and with

little or no residual tilt. The linear acceleration sensations are good

only at the high frequencies, and it is therefore unreasonable to expect

linear motion cues in such simulators to have a pronounced effect on the

control of simulated linear(path) motions which are at low frequencies.

The accelerations can only act as a monitor of control activity and as an
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indicator of the simulated environment, e.g., aerodynamic disturbances

and simulated aircraft failures. However, as pointed out by the Ref. 4

results, the lack of the low frequency motion may provide (unintentionally)

an additional and useful cue to the pilot.
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APPENIX A

SEILATION DESCRIPTION, PHSE II EXPERINTS

The VFR and IFR experiments discussed in the main text were conducted

using the simulation described in this appendix. The topology of the

experimental setup is illustrated in Fig. A-1.

The real-time digital computer simulation of the subject aircraft (to

be described below) is fully described in Ref. 10. It was modified to

include generation of the motion simulator drive signals ("washouts") and

measurement of pilot-vehicle system performance.* The program uses both

table look up and function generators for the aerodynamic data. These

data are nonlinear and include ground effects which for the simulated air-

plane are negative (i.e., "suckdown"). The program features both fast and

slow loops for the integration of the dependent variables. The compute

cycle durations were 49 and 98 milliseconds for the two computational loops.

The fast loop was used for integrating all angular accelerations and simu-

lator drive signals (both angular and translational); the slow loop was

used for integrating all other translational accelerations. All computer

outputs were updated every 49 milliseconds.

VETICLE DESCRIPTION

The airplane simulated in these experiments is the Augmentor Wing Jet

STOL Research Aircraft (AWJSRA) intended for evaluation of the augmentor

wing concept in STOL-type passenger aircraft. It is basically a deHavilland

"Buffalo" incorporating a wing of reduced span to increase the wing loading

to a level typical of a commercial STOL airplane. The augmentor wing

incorporates fixed leading edge slats, augmentor flaps, and blown ailerons.

Propulsion is by means of two Rolls Royce Spey engines mounted in wing

nacelles. The direct, or hot thrust is through swiveled Pegasus nozzles

while the cold flow is ducted to the augmentor flaps and the blown ailerons.

*Additional modifications of a more minor nature included deletion of the
longitudinal control system dynamics and the thrust diverter loops. Provision
was made for altitude acceleration disturbances (Ed) used in the describing
function measurements.
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Longitudinal control is effected with elevator, throttle and thrust diverter

controls; lateral control by rudder deflection and a geared combination of

aileron and spoiler deflection with choking of the flow through the outboard

augmentor flap. The simulated aircraft employs both a lateral and direc-

tional stability augmentation system, the linearized equivalent of which is

shown in Fig. A-2. The SAS was used in only the VFR tracking experiment,

being turned off for the IFR experiment.

In the IFR experiment an approach flight condition was simulated having

an airspeed of 30.9 m/s (60 kts), -0.131 rad (-7.5 deg) flight path angle,

with a gross weight of 18,130 kg (40,000 lb). In this condition, the flaps

are deflected to 1.134 rad (65 deg), the ailerons are drooped to 0.525 rad

(30 deg), and the Pegasus nozzles are directed almost vertically at approxi-

mately 50% of rated hot thrust. For the VFR experiment, the flight condition

was similar except that the thrust level was increased substantially (to

about 90%) to hold a level flight path at the same airspeed with the

nozzles deflected slightly aft of vertical.

In either of these flight conditions the longitudinal handling qualities

of the airplanno suffer fro-m, 1to- cont.rol' sensiti-vity for contro:l of fih

path (see Table B-2). Without SAS, the lateral dyniamics are dominated by

a relatively rapid spiral divergence - with SAS the divergence is eliminated.

Pre-experimental analyses of this airplane indicated a relatively low

sensitivity to the presence or absence of motion cues. That is, path control

performance would show only slight improvement with motion - attitude

control, however, could be expected to improve, moving base. These analyses

also suggested the possibility that vertical (heave) accelerations might be

used by the pilot in control of flight path - here again, low control

power would limit the performance improvements possible.

CONTROLLERS

Control of the simulated vehicle was effected differently from the

actual airplane, using a two-axis center stick (instead of column and yoke),

pedals, and console mounted throttle and thrust diverter (nozzle angle)

controls to the pilot's left (instead of overhead controls to his right).

There was no flap control, the flaps being fixed for the experiment. The
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controllers in all cases were scaled so that the full deflection of the

cab controls corresponded to full deflection of the simulated aircraft

controls. The controller characteristics are listed in Table A-1. They

were all regarded as satisfactory by the pilot subjects.

DISPLAYS

The instrument panel was located approximately 66 cm from the pilot's

eyes. Its layout is indicated in Fig. A-3 and illustrated in the photograph

of Fig. A-4. Thne'ADI comprized a 7.6 cm ball for display of aircraft pitch,

yaw, and roll attitude; horizontal and vertical bars for display of glide slope

and localizer errors, and a turn/sideslip indicator. The scaling of the

bars was such that full deflection of the horizontal bar corresponded to

52.4 mr of glide slope error; full deflection of the vertical bar corre-

sponded to 10i-.8 mr of localizer error. The usual scaling for an ILS

indicator is 8.74 mr and 43.7 mr, respectively - the experimental setup

is considerably less sensitive. The ILS needles were fed by signals corre-

sponding to fixed ranges (1263 m, glide slope; 1755 m, localizer) from the

antennas. For the TF? eperimen't they Tere disabled 

Both sideslip indicators (the one on the ADI and the separate instrument)

were scaled for 1 cm deflection corresponding to 0.1 g of lateral acceleration.

The turn indicators were scaled such that full deflection (two needle widths)

corresponded to a one minute turn (0.1045 rad/sec yaw rate).

Of all the instruments, only the compass and airspeed indicators had

lags within the frequency range of interest; approximately 0.3 sec (compass)

and 0.15 sec (IAS). All other indicators (except trim) had lags of less

than 0.1 sec based on measured amplitude versus frequency characteristics.

These remarks apply to the instrument, its drive servos (if a 400 Hz

instrument), and any filtering used to smooth the digital computer's out-

put. In some instances, considerable filtering was required because of the

relatively slow computer update rate (every 49 ms).

For the VFR experiment, the visual scene was generated by Ames Research

Center's Visual Flight Attachment IV (GPS), a visual display system employing

a moving belt for the longitudinal degree of freedom. It was presented to
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the pilot by means of a black and white TV monitor mounted on the shelf

(visible in the photograph of Fig. A-4) above the instrument panel. The cen-

ter of the 61 cm screen was located approximately 53 cm from the pilot's eyes.

DISTURBANCE INPUTS

The longitudinal task disturbance was provided by the describing function

analyzer (DFA) in the form of an altitude acceleration disturbance, h.d' This

was composed of a random-appearing sum of five sine waves whose characteristics

are shown in Table A-2. To the pilot, it manifested itself as vertical

gustiness of light to moderate amplitude.

TABLE A-2

DISTURBANCE SPECTRUIA*

The lateral task disturbances were simulated by feeding prerecorded

white noise through "gust filters" each having- a first order lag character-

istic. The amplitudes and filter frequencies are indicated in Table A-3.

For repeatable time averaged performance measures, each input consisted of

a 100 sec long noise sample repeated over and over - a different sample

for each of the two inputs. The mean value of these inputs was nominally

zero. However slowly varying biases in either the reproducer or in the

original recording of the 100 sec tape loop introduced the equivalent of

a mean wind (averaged over 100 sec) which varied between 0 and 0.5 m/sec

blowing from the right and causing the aircraft to drift left.

*-
*a -- = 0.412 m/sec2 , 0hd - 2.06 m.
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ACCELERATION EQUIVALENT ALTITUDE

FREQUENCY AMPLITUDE, hid DISTURBANCE, h
d

(rad/sec) (m/sec2) (mn)

o.1i886 o. 0677 1.905
0.503 0.203 o.84
1.257 0.203 0.129
3.016 0.203 0.022
6.283 0.203 0.005
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TABLE A-3

SIMULATED LATERAL GUST CHARACTERISTICS

MOTION SIMULATOR AND COMPENSATION

The motion simulator used in these experiments was the Six-Degrees-of-

Freedom Motion Simulator (S.01) at Ames Research Center (Fig. A-5), designed

for V/STOL research. The cab rotates about all three axes [rotation order

is roll (inner gimbal), yaw (middle gimbal) and pitch (outer gimbal)] and

translates up and down (±+2.5 m travel) on the front of the tower. The

tower moves longitudinally and laterally (±+2.7 mn travel in each direction)

for the x and y degrees of freedom.

Measurement of the simulator failed to reveal any significant differences

in the simulator response from earlier measurements, e.g., Ref. 11 . Conse-

quently, the simulator was compensated against these characteristics as in

other programs using an equation of the form:

Xc = k
s

+ K
l
i s + K2X s

where

lists

(A-1)

Xc is the simulator command and Xs the computer value. Table A-4

the values of the compensatory coefficients, K1 and K2:

TABLE A-4. MOTION SIMULATOR COMPENSATION

AXIS K1 (sec) K2 (sec2 )

Roll, 0.08 0

Pitch, a 0.18 0.012

Yaw, $ 0.08 0

Longitudinal, x 0.22 0.033

Lateral, y 0.21 0.028

Vertical, z 0.17 0.020

TR-1 01 4-2

SYMBOL AMPLITUDE INVERSE FILTER TIME CONSTANT

VBN aVBN = 0.96 m/sec 1/TVBN = 0.105 sec
- 1

PBN (PBN = 0.0136 rad/sec 1/p = 1 .000 sec 1
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WASHOUT CONFIGURATIONS

One of the major criteria governing the configurations of the experiments

was that the linear motion cues be simulated with good fidelity over a wide

frequency range, in particular, at the relatively low frequencies where they

could be of use in flight path control. The relevance of such cues in STOL

simulations was a primary area of interest. To this end, a coordinated

washout scheme was used. The size of the simulated disturbances and the

parameters of the washout were so selected as to take maximal advantage of

the linear travel capabilities of the Six-Degrees-of-Freedom Motion Simulator.

During practice or training runs this resulted in occasional (sometimes

frequent, if the subject was having a bad day) episodes of running into

the simulator travel limits.

The coordinated washout scheme used'in these experiments was developed

in Refs. 12 and 13 and is illustrated (excluding the simulator compensation

and motion limiting scheme) in Fig. A-6. In this figure the blocks labeled

Ti/c($,O,40) or Tc/i(p,Ojr) represent transformations from cab coordinates

to inertial coordinates or vice versa - they are transformation matrices.

Similarly, M(cp,6,) represents a transformation from body axis rates to Euler

(cab) angle rates.

In this scheme, small cab tilt angles are used to provide the sensation

of low frequency translational accelerations in cab coordinates. For small
b*

angles, the simulator cab rates are given by:

V1 %K(O)3 ri K K K 2 (0)(a)(b)

- HLt] /z ' ] | (l/T)/[,w[] |s, Ks a (A-2)

where the second term represents the false rate cue due to residual tilt.

The derived quantities T, ~, w, a, and b in this and subsequent equations

result from the closed loop implicit in Fig. A-6. The residual tilt rates

*Throughout this report, a shortened notation is used, viz:

(1/T) implies (s + 1/T)

[,c] implies [s2 + 2Gws + 2
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generated by the stabilizing network modify the transformation matrices

which in turn alter the inputs to the stabilizing network.

The cab translational accelerations are given by:

.r1 ( 0) fX20) f sp Ka~o [y ~ I[Z,% (1/T)[,][s,s L] ]+ ap]

(A-3)
Kwg(0)2 -q

(1/T) [~,i

Five separate washout configurations were used in the course of the IFR

and VFR tracking experiments. The values of the various parameters are

listed in Table A-5. Configuration 0 was used in the IFR experiment while

the remaining configurations were used in the VFR experiment.

The linear motion washout responses of this coordinated scheme are shown

in the sketches of Fig. A-7. They are fourth and fifth order washouts -

even a bias in the computed acceleration will not result in a simulator cab

steady-state position different from zero.

The accelerations (specific forces) sensed by the pilot are given

by: [axpK 
a = - 0+ g (A-4)

azpJ

Performing the indicated substitutions from Eqs. A-2 and A-3 yields:

[xp] Kag ((0)5 + KaaK2sg(a)(b)[%nj [axp

y2p oKyg(0)2( / [-) 1 + Kee[n l l
TR A 014-2) ][ ] l 618[I L

azp_ (A-5)

-,2w q4 2~ 1 WY~g ~12 K(+

+ -P + 0~~~~~~~~O/TRP,,0[~,] t~w, II 6-bI:
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TABLE A-5. COORDINATED WASHOIUT CONFIGURATIONS*

ATTENUATION AND
HIGH PASS FILTER

ATTENUATION AND
LOW PASS FILTER

RATE
ATTEN.

CONFIG. Ka n (s_) Kf s c-1
. (_sec 1 ) _ ( sec 1 ) _ _ _

0 o.5 0.7 o.5 o.5 0.7 5.0 o.5

0.75 (axp) 0.75 (q)1 0 .75 o0.7 0 .35 °° 3755 ( ayp) o0.7 1 0o.0 0.75 (P)

2 1.0 0.7 0.5 1.0 (ax) 0. 7 10.0 1.0 (q)
0.35 (ayp_) 0.5 (p,r)

1.0 075 .0 (a) 0.7 1.0 (q)
32o 1.0 1 107 0.75r(a) 0.7 10.0 0.75 (p, r)

4 ~1.0 0.7 0.7 1.0 Iaxp 0.7 10.0 ( q)

STABILIZING NETWORK _ DERIVED QUANTITIES

F I I i I I I' I
CONFIG.Kis K2

s K3s 1/T m a b
CONFIG. (ni- ) (sec) (sec-1) (sec-1) (sec- 1) (sec-

1 ) (sec-1 )

0 0.0328 2.50 0.075 0.095 0.71 5 0.511 0.100 0.300

1 0.0150 3.70 0.041 6 0.05 0.707 0.35 0.0515 0.21 9

2 0.02905 2.69 0.0)438 0.05 0.707 0.50 0.0506 0.326

3 o0.0628 1 .805 0.0457 0.05 0.707 0.75 0.0505 0.504

4 0.1091 1 .35 0.04165 0.05 0.707 1 .00 0.0503 0.686

*
The inertial washout was the same for all configurations, viz:

~. = 0.7, L = 0.1 sec-1 . The limiting scheme is described in Ref. 13.
It effectively prevents the motion from exceeding +2.44 m (soft limit).
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Figure A-7. Sketches of Linear Motion Washout Frequency Responses
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In this expression, the second term represents a residual force response to

the simulated aircraft rates.

The responses of importance to simulator fidelity are the cab rates

and specific forces. These are sketched (for the longitudinal task - similar

sketches apply to the lateral variables) in Fig. A-8. The force response (a)

is very nearly flat out to the low pass filter break point at ws - it would

be exactly flat out to ws if no inertial washout (the box in the upper

right hand corner of Fig. A-6) were used. Unfortunately, the low frequency

inertial washout is necessary to eliminate very low frequency drifts in the

commanded cab position which apparently result from the nature of the numerical

integration.

The cab rates are washed out (b) - a third order washout. This happens

because the action of the washout is to maintain the specific force at its

correct value. Given an input rate, q, the cab will initially translate to

hold axp fixed, then return toward zero under the action of the linear

motion washout. To keep a fixed axp, the cab tilts, thus washing out the

pitch rate.

The lower two sketches in Fig. A-8 illustrate other losses in fidelity.

The residual tilt response is sketched in (c). To maintain low frequency

specific forces while washing out the linear acceleration requires that the

cab tilt, producing a tilt rate. Sketch (d) shows similar errors in the

specific force due to simulated aircraft rates. This last error would not

exist if inertial motion washouts were not used.

For a given allowable linear travel Fig. A-7 shows that one can trade

X (or an) against Kf (or Ka) - the scale factor can be increased as X

increases. Since KlsK2s is proportional to w, sketch (c) of Fig. A-8

shows that the residual tilt rates increase with both w and Kf. For a

given simulator travel, the residual tilt rates increase as the washout

break frequency, w, increases - this is the basic tradeoff in the coordi-

nated washout scheme.

DATA TAKING PROCEDURES

The largest body of data taken in these experiments consists of time

averaged measures of the mean and variance of several motion variables.
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These were computed by means of a subroutine of the main simulation program,

and were printed out at the end of each runm.

The method used in making the describing function measurements is

schematically indicated in Fig. A-9. The describing function analyzer

provides a vertical acceleration disturbance, hd, and correlates the

resultant vertical acceleration, P, with this to obtain the describing

function. The measured error-to-input describing function takes the form:

h (A-6)
hdhd 1 + YphYc

where YphYC is the effective pilot-vehicle open-loop describing function in

the altitude control task. Yc is the effective altitude response transfer

function with the ilnner loops (attitude and airspeed) closed. The measure-

ment was made in terms of accelerations for programming convenience - the

subroutine which computes the simulator motions operates on commanded

accelerations, not velocities or positions. The measurement therefore was

less accurate than desirable at the lowest frequencies near crossover

(0.10 to 0.5 rad/sec). This was demonstrated by poor measurement repeat-

ability at the lowest two frequencies when calibration runs were made with

no VN or PN disturbances and either with or without an analog pilot -

situations where the repeatability can be expected to be relatively high.

These variations can be attributed to several factors. First, there is the

small low frequency transient produced by slight mistrimming of the air-

craft. When coupled with variations in the describing function measurement

start time (5 to 10 seconds after the problem is started) this produces

variable amounts of low frequency power. Secondly, the computing equipment

may be subject to drifts in the difference between the ground potential at

the analog computer console and the analog-to-digital and digital-to-analog

interfacing rack located several feet away. Reference drifts within this

interfacing rack are a third possible source of low frequency noise power.

The measurements of YPhYc at the high frequencies far from crossover

were also somewhat noisy, but for a different reason: obtaining YpYc

from the measured h/hd (in itself, repeatable within a small percentage)
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a) Mechanization

b] Equivalent Block Diagram

Figure A-9. Describing Function Measures
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amounts to obtaining small differences between large numbers. Fortunately,

measurement accuracy is not critical in this region.

The measurements themselves (actually the real and imaginary parts of

the error-to-disturbance describing function at each measurement frequency)

were recorded by hand from voltage readings on the describing function

analyzer at the end of each run. These were corrected for known biases in

the readings before processing off-line for the open-loop describing

function, YphYc.

Pilot comments were noted by the experimenter when significant remarks

were made. Performance during the run was monitored using the strip chart

recorders. These recorders were also used on occasion to monitor the motion

simulator and visual display system position feedbacks, and feedbacks from

the 400 Hz cab instrument drive servos.
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APPENDIX B

PHASE I EXPERIMET

The experimental data from the Phase I experiment were obtained in 31 runs

over a three-day period with a NASA research pilot as the subject. These

data were exploratory in nature and comprised a comparison of fixed base (FB)

and moving base (MB) conditions with and without lateral and directional

stability augmentation systems (SAS) under IFR conditions. The primary

measurements were time averaged error variances over a 100-sec time interval.

Pilot commentary was also noted.

EXPERIETAL PROTOCOL

The training period consisted of one day of practice (about 20 runs)

primarily in the fixed base condition with SAS, with and without disturbance

inputs. The subject was familiar with an earlier simulation of the AWJSPJA

using the Flight Simulator for Advanced Aircraft (FSAA). During this practice

period, the subject evaluated the simulation in the light of his earlier

experienlce and judged it to be representative of the AWJSRA despite obvious

differences in displays and controls.

A typical experimental session consisted of several fixed base practice

runs with and without SAS, followed by the experimental runs, usually

moving base first. Pilot commentary during or following the run was noted

by the experimenter.

PERFORMANCE DATA AND CORRELATES

The standard deviation data are summarized in Table B-1. Note that the

airplane motion variable data refer to computed variables, not cab motions.

The subject voiced three reservations regarding the simulation, all of which

would affect his performance, particularly in the lateral/directional

control tasks:

* Lateral Drift - There was a tendency of the simulated
airplane to drift left, a fault apparently explained
by random variations in the mean lateral wind dis-
turbances. The pilot would tend to hold a crabbed
attitude to counter this drift.
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* Turn/Slip Indicator -- This was judged to be "too
insensitive." (The sensitivity was increased by
some 40% for Phase II.)

o Rudder Pedals - These were judged to be "overly
sensitive." (The breakout forces and gradient
were reduced for Phase II to make control about
the zero position more precise.)

The attitude ball itself was known to be jerky in its yaw response although

the pilot did not so indicate. In light of the Phase II results, this

probably influenced the lateral performance in Phase I as well.

The individual data points also show considerable scatter although a

slight learning trend is evident in the runs without SAS. The subject

commented on being tired during the second experimental session, a factor

reflected in the data - the second day's performance was generally worse

than the first even though the experimental conditions were the same for

much of the data.

On comparing the data with and without SAS (Table B-1), in most cases

the performance measures are less with the SAS, the major exceptions being

the glide slope and localizer errors. These also would be expected to be

better with the SAS. The fact that they are not is attributed to differences

in pilot set, fatigue, and so on - most of the SAS data were taken in the

first two days, while the no-SAS data was taken on the last two days.

The most interesting comparison is between the FB and MB conditions.

With SAS, the data of Table B-1 show significant differences between these

conditions for 5 of the 14 variables, all lateral/directional variables*.

But these differences may be more apparent than real. Note that three data

points have been eliminated from averaged performance for op, the rudder

pedal deflection. If the corresponding data points are eliminated from all

averages, then only the improvement in roll attitude performance (%) becomes

significant. The results are therefore inconclusive, although the improve-

ment in roll attitude control is judged significant despite the possible

*Throughout this discussion, the F test for equality of variances is used
as noted in Table B-1. The number of degrees of freedom associated with
each variable is estimated based on the apparent bandwidth of each process
and the total run time (aggregate of all runs for a given set of conditions).
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influences of the simulation faults noted above. The subject pilot, however,

felt that there was no difference between the FB and MB conditions with SAS.

Without the SAS, the number of significant differences between the

FB and MB conditions increases to eight variables out of fourteen, all of

which have relatively large bandwidths. Both longitudinal and lateral

directional tasks show improvement under MB conditions. The pilot, after

some deliberation (the last four runs were made to aid him in crystalizing

his impressions), decided that there might be some improvement, MB, but

that the improvement, if it existed, was slight. These results are largely

in accord with the pre-experimental predictions where only a small improve-

ment with motion was expectsd (see Table B-2)*.

The analysis summary of Table B-2 suggests the speed control (STOL)

technique to be most appropriate. However, the pilot commented to the effect

that he controls altitude with attitude changes and "largely ignores" airspeed

changes, controlling them when necessary with the thrust diverter. "Ignoring

airspeed" generally meant that he flew slightly fast (by 1 to 1.5 m/s),

thus lessening the backsidedness and making the CTOL technique more feasible.

However, both the SAS and the no-SAS data show a tendency for the glide

slope performance to deteriorate. This is true despite a slight improvement

in the altitude acceleration performance and suggests a shift in the

dominant mode frequency with this frequency being lower in the moving base

case. This result differs from the trend for the other performance variables

as well as from expectations.

One possible explanation for this result is that the pilot may alter

his control strategy in such a way as to avoid encountering the simulator

limits. That is, motion inhibits the subject. The decreased dominant

mode frequency, while it deteriorates overall performance, can reduce the

simulator cab excursions because of the washout's attenuation. In the

present example, this frequency would appear (comparing eGS and ah with

*This analysis drew heavily on an analysis of the longitudinal handling
qualities of the AWJSRA performed in the course of a concurrent NASA
contract, NAS2-6441, "Flight Director Displays and Stability Augmentation
System for the Augmentor Wing Jet STOL Research Aircraft."
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proper allowance for range) to be below the washout's break frequency of

0.5 rad/sec. Examination of strip chart recordings of the lateral and

longitudinal cab position commands suggest that more encounters with the

simulator limits would have occurred in the fixed base runs, particularly

the lateral limits. Of course, more attention to the lateral task, moving

base (or just the distraction of the motion, noise, and vibration) diverts

attention from the longitudinal task. In short, the pilot may be flying

the simulator instead of the airplane.

A second possible explanation of the performance trend may be associated

with the scaling of the ILS needles. Consider the glide slope error: The

scaling is such that the rms error (Table B-1) corresponds to an angular

error at the pilot's eye of about 1.7 milliradians. Taking the dominant

frequency (estimated by comparing ah to ANGS, Table B-1, as 0.3 rad/sec

implies an rms angular rate at the pilot's eye of about 0.5 milliradians/sec.

This implies (based upon interpreted angular velocity threshold data quoted

in Ref. 10) recognition times on the order of 4 sec. The rms glide slope

error also implies rms vertical excursions of 3.36 to 4.27 m at the fixed

effective range used for the ILS indicator. It is not hard to see that

the vertical stops will be encountered occasionally, even with the motion

attenuation used in these experiments.

A similar analysis for the localizer error reveals an rms amplitude at

the pilot's eye of 1.3 milliradians. The dominant frequency is estimated

to be about 0.3 rad/sec, suggesting an angular rate at the pilot's eye of

approximately 0.4 milliradians/sec. The recognition time is even longer

than for vertical errors. The computed rms lateral excursions of 7.95 to

10.98 m suggest, a) relatively more frequent limit exceedances plus

b) dominant frequencies below 0.5 rad/sec, the washout break frequency

to reduce the motion amplitude still further - there is no y data from

which to estimate the dominant mode frequency).

The foregoing suggests that the motions of the ILS indicators are close

to the pilot's threshold for detecting such motion. This would imply that

the control precision achieved is limited by these thresholds. If so, then

the simulator motion may act to increase these thresholds, with the result

that performance deteriorates in the moving base condition.
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Another factor affecting all the performance data is the magnitude of

the motions in the experiment relative to the pilot's effective threshold.

The magnitude of the angular rates sensed by the pilot (ignoring residual

tilt rates, but including the motion attenuation by half) are typically a

factor of three under his presumed angular rate thresholds, per Ref. 1

(see Table B-3). The sensed linear acceleration, 0.5t, in the altitude

control task is at an rms level near 0.055 g. The pilot felt this accele-

ration level to be barely detectable. (Lateral and longitudinal accelera-

tions were not measured.) ThILe experimental situation apparently is one

where even though the angular rates are perhaps too low to be adequately

sensed, the linear excursions are large enough to cause simulator limiting

during a significant nummber of runs.

TABLE B-3. RMS ANGULAR MOTION RATES* IN PHASE I EXPERIMENT

WITH NO THRESHOLD
SAS SAS (Ref. 1)

Pitch 15.1 15.8 4Fj.4

Yaw 9.1 10.3 19.2

Roll 135.8 18.9 55.9

SULAuRY

The Phase I experimentation was intended to prove out an experimental

concept for the Phase II experiments and to provide some initial experi-

mental data on motion effects. The results discussed above indicate the

possible existence of threshold effects evident in both the visual and

motion cues. These effects confound the data obtained in the Phase I

experiment. On the other hand the data indicate some motion sensitivity -

at least to the angular rates - in agreement with expectations. The pilot's

*In mr/sec. These figures are half those given in Table B-1 i.e., they
do not include the effects of residual tilt or washout, but do include
attenuation by half.
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precision of attitude control in the simulated airplane is improved with

the presence of motion cues.

With regard to the linear motion cues, the Phase I data do not shed

much light. The motion differences are primarily in the angular degrees

of freedom, and while the vertical accelerations are reduced under moving

base conditions, it can be argued that the improved control is due to a

change in "strategy", that is, to avoid hitting the t-ravel limits, as much

as due to the presence of the vertical acceleration cues. This strategy

is one where the outer loop crossover frequencies are lower which increases

the error but reduces the simulator excursions because of the attenuation

of the motion washout.

The amplitude of the motion cues was not varied in this experiment

(except between FB and M), as a means of ascertaining motion threshold

effects. However, the motion amplitudes observed indicate that these

effects could be present. In fact, the significant improvement in attitude

control, moving base, suggests that the effective angular motion thresholds

for this task (and subject) are lower than heretofore supposed (i.e., in

Ret. i) because of the low rms angular rates relative to this presupposed

threshold, particularly in pitch and roll.

These results suggested that the Phase II experiments be designed, at

least in part, to answer some of the questions raised. The IFR experiment

in particular (Section III) was intended to determine if visual velocity

threshold effects and changes in piloting "strategy" influenced the Phase I

results. The TFR experimental configuration (Section IV) was influenced

by the desire to increase the angular rates and linear accelerations without

violating the simulator limits. And, of course, the single axis tracking

experiment (Section II) was motivated by the desire for an unambiguous

answer to the question of whether or not linear acceleration cues could be

effectively utilized in a tracking task.
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APPEt\DIX C

PHASE II SUPILEMETARY DATA

This appendix contains supporting data to the discussions in the main

text. A run by run listing of all the data for each of the three experiments

in not included - the computer printouts are quite long, and by themselves,

not especially illuninating. Rather, certain averaged data from these

experiments are presented. In the case of the standard deviations of the

various motion variables. this tends to weight episodes of poorer performance

more heavily. On the other hand, there is no good reason for discarding

such data in most instances.

ILEEMIING TREDS IN TFE SlNGLE--AXIS
T-CAiMNG TASK

The results and conclusions drawn in Section II are based upon inter

pretation of averaged data where the average is taken over the last two or

three runs for a particular configuration and subject. These runs were

made at a higher controlled element gain (Kc = 3.96 sec- 2 ) than the earlier

data (Kc = 2.64 sec- 2) and represent performance closer to asymptotic

values and optimum gains than the earlier data. To place these results in

perspective, it is appropriate to consider the learning trends exhibited

in the experimental results.

The controlled element gain was initially selected by EF in fixed base

trial runs where the lag time constant was 0.1 sec. This later proved sub-

optimlum when increased training on the part of both subjects plus increased

lag (to 1 .0 sec) resulted in using virtually full controller travel in

each of the tasks. The last two or three runs were made for the express

purpose of evaluating the 50% higher gain and investigating the effect of

cab position on the simulator's tower. Both pilots commented favorably

on the gain increase. Even so, the gain was sub-optimum to judge by the

subject's control activity. It frequently consisted of stop-to-stop

deflections.

The comgined effects of learning and the gain increase are illustrated

in Fig. C-1 for the centerstick tasks for both subjects. (Earlier runs than
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those noted here were made with lower lag time constants than the 1.0 sec

pertinent to these data.) The gap in each of the plots of rms error and

crossover frequency, sac (determined from the describing function measure-

ments), separate the low Kc data on the left from the higher Kc data on

the right. A learning trend is clearly evident in the xc data at low Kc

for both subjects. The last two or three points show a continuation of the

trend, however the improvement can also be ascribed to the increased gain.

The trend is less obvious in the rms data because of fewer runs and increased

scatter in the data points. Nevertheless it is clear that the later per-

formance represents an improvement over the earlier.

Figure C-2 shows the equivalent data for the pedal tasks. The same

trends, albeit with more scatter in Ad, are exhibited as for the center-

stick tasks.

The asterisks in both figures identify runs made with the cab at the

bottom of the tower. In the L0N configuration, neither pilot noted any

difference in the motion sensation. But in the IAT configurations EF noted

"less jerky" motion at the bottom of the tower, whi]e JK thought the motion

seemed :delayed in this position. The implication is clear - lateral

simulator motion contains extraneous accelerations, perhaps associated with

the tower's torsional dynamics - the cab center of mass is forward of the

tower centerline. However the limited data available are insufficient to

demonstrate a performance difference. These data points were therefore

lumped in with the rest.

The open-loop describing function data for the four runs preceding the

gain change and the two or three runs following it are given in Table C-1.

The averaging was accomplished by treating the data as coming from one long

run. For example, the raw measurements of the real and imaginary parts of

the measured error-to-input describing fuaction as measured by the describing

function analyzer were averaged and the results used to determine the

averaged open-loop describing function. The data trends for the earlier

data are the same as for the later with one exception: For JK, the LAT

configuration exhibits poorer performance than P when Kc = 2.64 sec-2; the

reverse for Kc = 3.96 sec- 2
. The data trends are therefore relatively

insensitive to learning effects - an important factor in evaluating the

validity of the trends exhibited.
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TABLE C-1

AVERAGED DATA SUMIARY, SINGLE-AXIS TRACKING EXPERIMENT

*These error data are for 3 runs only, unlike the describing function
data.

TR-1 014-2

PILOT_ (sec) OF RUNS (rad/sec) (dB) (deg) (deg) (volts)

S 4 1.30 4.7 27 -344 2.52

LON 4 1.68 6.0 28 -241 1.62

2.64 VER 4 1 .65 5.6 26 -253 1 .59

P 4 1.15 5.2 29 -562 2.96

IAT 4 1.22 6.4 28 -279 2.67
EF

S 2 1.62 2.6 16 -351 2.1 0

LON 3 1.93 6.0 28 -225 1.25

3.96 VER 2 1.86 4.2 24 -229 1 .55

P 2 1.35 3.7 22 -390 2.72

IAT 3 1.45 4.8 24 -250 2.45

S 4 1.47 4.3 23 -539 1 .64*

2Lo.6 4 1.61 5.0 22 -233 1 .4'

2.64 VER 4 1.70 5.0 22 -259 1.27*

~I ~P 4 1.25 7.6 29 -311 2.47*

TAT 4 1.17 8.4 28 -275 2.72*
JK

S 2 1 .98 1 .6 10 -300 1 .26

3.96 VER 2 2.1 0 3 .8 16 --218 1 .1 0

P 2 1 .61 3.6 18 -302 2.14

TAT 3 1 .53 4.9 18 -257 1.96
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Another factor lending credance to these trends is the relatively small

run-to-run scatter in the describing function data where that data counts

for most - in the region near crossover. In this frequency region, the

signal power is greatest and the measured describing function most accurate.

At the middle frequency used in these measurements (w = 1.257 rad/sec),

generally somewhat below crossover, the range (smallest to largest value)

of the YpYc gain data is typically about 3 dB for EF, 7 dB for JK; of the

phase data, about 10 deg for EF, 15 deg for JK. This is borne out by the

plotted data of Figs. C-1 and C-2 - the range of wc is somewhat larger

for JK than for EF.

The accuracy falls off somewhat at the highest frequency, X = 6.283 rad/

sec. Here the gain range is typically about 10 dB for EF, 15 dB for JK;

the range in phase measurements, about 60 deg for EF (smaller for the center-

stick tasks, larger for the pedal tasks) and 75 deg for JK - most of the

range taken up by the learning trend (less gain and more phase lag for the

earlier runs). Even so, the averaged phase data listed for this frequency

in Table C-1 is felt to be indicative of the motion effects.

At the two lowest frequencies, the accuracy of the describing function

measurements was extremely poor. This is because error power at these

frequencies is low - the second derivative of the error (that signal

actually measured by the DFA) is lower yet. The range in the run-to-run

measurements of YpYc at these frequencies was enormous - exceeding 20 dB

of gain and 300 deg of phase in some instances. As a result, all the data

(6 or 7 runs) was averaged at these two frequencies in an effort to gain a

better estimate of YpY at these frequencies. Even so, the data in the mainp c
text (Figs. 4 and 5) at these frequencies is felt to be unreliable, particu-

larly for the pedal tasks.

PERFORMANCE DATA TRENDS IN THE
IFR TRACKING TASK

As pointed out in Section III there is considerable scatter in the

performance data for a variety of reasons. Consequently, there is a problem

in drawing results from these data: Should all runs be considered, or only

the last four where the subject is closer to an asymptotic performance
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level and it is known that the input disturbance generator is working

properly? Another option is to extrapolate the data to presumed asymptotic

performance levels and compare these - a process which can be faulted as

*too subjective.

The point of view adapted is to regard those trends (variations in the

data between experimental configurations) valid which are established, for

each experimental configuration, by both the grand average data (all runs

for a configuration) and an average over the last four rur.s. Tables C-2 and

C-3 list these averages for most of the performance parameters.

In all cases, the data show that the pilot flies slightly fast (by

1.1 to 1.7 m/see) with the thrust deflected slightly aft of the desired trim

condition (by 0.05 to 0.10 rad). This tends to improve the altitude responses

of the aircraft. The pilot, in making his tradeoff between altitude, lineup,

and airspeed errors chooses an airspeed slightly high as being the best

compromise.

To assess the effects of motion cues on the longitudinal task (the

lateral task trends are regarded as unreliable because of the sticking

attitude ball in yaw as noted in Section III), the MB and MB - L configura-

tions are compared with FB. Examination of Tables C-2 and C-3 show:s Cq,

ah, oa, oa and the pitch attitude control task "bandwidth", q/aco, all

decreasing with theaddition of the longitudinal task motion cues. But

the validity criterion adopted does not permit any conclusion to be drawn

concerning longitudinal task performance as indicated by aCG
S
. Consequently

the overall altitude performance is judged essentially invariant with the

presence or absence of longitudinal task motion cues.

A similar assessment of the effects of the presence or absence of lateral

motion (comparing the MB and MB - L; the MB + N and MB + N - L configurations)

shows a slight improvement in the altitude error, COGS, and the altitude

task "bandwidth", ca/Oh, when the lateral motion is removed - jEGS decreases

and co/Ch increases for the -L configurations.

The effect of doubling the ILS needle sensitivity is manifested in many

more variables. Comparing MB vs. AM + N, and MB - L vs. MB + N - L shows

changes for most of the dependent variables - 605, aq, ', o~, and ah/ch
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TABLE C-2

IPERFORMANCE DATA SUIMARY, IFR TRACKING EXPERTMENT

CONFIGURATION FB MB MBN MB L MB + N-L
NIUMBER OF RUNS 8 9 9 7 8

TRIM CONDITIONS

Va nm/sec 32.2 32.2 31 .7 32.2 31 .6

Tth rad 0.33 0.33 0.32 0.33 0.33

v rad 1 .44 1 .48 1 .39 1.47 1.44

V7N m/sec 0.29 0.32 0.29 0.30 0.31

PN__ mr/sec -1 .17 -1 .32 -1.28 -1 .36 -1.21

LONGITUDINAL TASK PEPRFORMANCE

cf ~ f-clm 2.29 1.95 2.49 1.90 247

eq mr/sec 22.6 18.1 23.5 17.5 22.4

Go mr 35.7 38.1 41 .4 31.7 44.8

eq/o sec-1 0.63 o.48 0.57 0.55 0.50

ah' m/sec2 0.49 0.43 0.52 0.43 0.52

ohL m/sec 0.86 0.80 0.93 0.77 0.94

<te;S rn-v. 3 3; 3.99.76 ^0 2.li

Sece 0.9. 195 0.267 0.202 .-273

LATERAL/DIRECTIONAL TASK PERFORMANCE

cfp cm 0.73 0.96 i.06 0.91 1.10

Ur ... mr./sec 25.6 25.6 25.5 26.5 29.9

a mr 63 .2 61 .1 63.9 55-5 63.7

Or/%r* sec '
1 0.41 0.42 0.40 o.48 0.47

aFw ~ rad 0.20 0.21 0.20 0.21 0.23

ap mr/sec 39.3 41 .1 36.2 40 .3 48.4

,cp mr 57.0 54.7 54.7 56.7 65.9

lp/em sec-1 0.69 0.75 0.66 0.71 0.73

cl~ rm/sec 1 .50 1.72 1.77 1.60 1 .741

aELOC mr 9.39 9.42 6.85 6.69 6.27

a. av sec-1 0.091 O .104 0.148 0.136 0.158|

COMMANDED SIMULATOR MOTIONS_ .! S , I ,~~~~~~~ -- ____ ¶

o m | 0.25 0.29 0.32 0.23 0.31

m 0.66 O .60 0.68 0.59 0.74

m 0.44 4 051 4 0.52
CTA~~ 0 .44 0 .41 0.51 0o.~O 0. 52

___z
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TABLE C-3

PERFORMNCE DATA, IFR TRACKING EXPERIMENT
(IAST FOUR RUNS, EACH CONFIGURATION)

CONFIGURATION FB MB MB + NI MB- L MB + N-L
NlllBER OF RUNS LAST 4 RUS --

TRIM CONDITIONS __ 

Va m/sec 31.7 31 .3 - .6 31.4 31.6

'th rad 0.33 0.33 0.33 0.33 0.33

v rad 1.46 1 .48 1 .43 1 .45 1 .45

V-N r/sec 0.20.2.26 0.27 0.23 0.26

_P--_N_ mr/sec -153 -1 .75 -1 .63 -1 .70 -1 .54

LONGITUDIINAL TASK PEPRFORMANCE

c c~cm 1 .80 1 .85 2.26 1 .88 2.03

5q mr/sec 17.4 16.5 21 .7 16.9 19.6

C0 mr 30.9 39.5 36.7 32.6 40.6

Gq/GOe .sec 1 0.56 0.42 .59 0.52 o.48

di; m/sec 2 o.43 0.40 0.50 0.42 0.50

5L; m/sec 0.72 0.69 o.89 0.70 0.89

GcGS ar 2.49 2.76 2.52 2.71 2.36

5h/Gh sec
- 1 0.230 0.199 .278 0.206 0299

LATERAL/DIRECTIONAL TASK PERFORMANCE

50p cm 0.69 o.84 0.94 0.76 1 .08

ar mr/sec 24.1 24.6 23.2 22.7 29.9

%r mr 67.3 59.8 58.9 56.0 66.3

ar/%a sec-1 0.36 0.41 0.39 0.41 0.45

oGW rad 0.19 0.23 0.18 0.19 0.22

5p mr/sec 36.8 43.3 33 .5 35.3 47.6

ap T mr 54.4 59.4 53.0 49.4 66.9

ap/%xP sec-1 0.68 0.73 0.63 0.72 0.71

o~~ m/sec 1 .37 1 .51 1 .69 1 .39 1 .71

GGLOC mr 9.62 8.69 7.00 6.33 7.05

aG/ar sec-1 0.081 0.099 0.125 0.138

COlvIAhNDED SIMULATOR MOTIONS

f: |m 0.25 0.25 0.30 0.23 0.31

ay |m 0.65 0.67 0.66 0.55 0.76

_ _z__ | m |0.40o 0.34 0.49 0.38 0.51
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all increase when the sensitivity is increased; uCG
S

decreases,. i.e., the

altitude performance improves. The simulator motions, o' and %, also

increase slightly. Even some of the lateral/directional variables are

affected- op, ay, and aa all increase in the -N configurations. The

effect of increasing the ILS needle sensitivity is judged relatively sub-

stantial, in view of its effects on most of the motion variables.

PFRFORMANCE DATA IN THE VtI TRACKING EXPERIMENiT

The last si, to eight runs for each configuration and subject provide

the data listed in Tables C-4, C-5, and (for the altitude control task

describing functions) 0-6 which comprize the quantitative results of the

VFR tracking experiment discussed in Section IV of the main text. In all

cases, the data listed assumes one long run, for example:

1N 2
°avg = i (C-1)

i1 ~

The performance is felt to be typical of well trained behavior each

subject had inwards of one hbrndr.d pri or runs on all -on-fi ra-ios. However

these earlier data are not strictly comparable with the later because of

differences in the disturbances used.

It is interesting to compare these data with the individual subjects'

perceptual thresholds as given in Table C-7 and, with modifications, Table C-8.

The Table C-4 and C-5 data for standard deviation of body axis rates are

modified to take account of motion washout scheme scale factor in Table C-9.

Comparing Tables C-8 and C-9 reveals the following:

1. EF's roll rates are generally [exceptions: Confi-
guration Nos. 1 and 2 (no i)] somewhat greater than
JKV!s, but his equivalent angular rate threshold
(Table C-8) is slightly less.

2. EF's pitch rates are generally [exception: Confi-
guration No. 4] less than JK's, but his threshold is
greater by a substantial (3 to 1) margin.

3. EF's yaw rates are less than JK's, but his threshold
is greater, by almost 2 to 1.
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TABIE c-4

PERFORIMANCE DATA, VFR TRACKING EXPERIMENT, SUBJECT EF

CONFIGURPATION FB 1 2 3 4 2 2 ( OF P FB ~~~~~~~~~~~(no z'(no 8, '
NUMBER OF RUNS _ 6 7 5 . 6 7 6 7

TRIM CONDITIONS

Va m/sec 31.2 31.6 31.5 31 .3 31 .3 32.0 31 .0

8th rad 0.52 0.52 0.52 0.52 0.52 0.52 0.52

V rad 1.27 1.27 1.27 1.24 1.26 1.29 1.24

VN m/sec 0.25 0.36 0.27 0.30 0.24 0.25 0.29

_PN mr/sec -1 41 -1 .16 -1 .58 -1 .56 -1 -. 55 -1.07 -1 .41

LONGITUDINAL TASK PERFORMANCE

abc cm 1.83 1.63 1.72 2.O1 2.55 1 .84 2.24

cyq mr/sec 18.0 19.3 17.0 18.9 22.5 18.8 21 .2

ao mr 24.2 27.4 24.2 25.2 28.8 31.1 25.8

aq/a
e

sec- 1 0.74 0.70 .7 0 .75 0.78 0.61 0.82

oy~ m/sec2 o.63 0.70 0.65 0.68 0.83 0.76 0.73

IAr m/sec 0.63 0.66 o .63 0.62 0.73 0.79 0.69

a ~h m 2.63 2.47 2.36 2.67 3.16 3.65 2.35

al/ah! sec-1 0.24 27 0.27 .23 0.231 0.22 0.30

IATERAL/DIRECTIONAL TASK PERFORMANCE

oop cm 0.20 0.24 0.31 0.24 0.26 0.22 0.26

ar ~ mr/sec 13.2 13.4 12.4 13.2 14.2 12.4 12.4

aC mr 31.8 30.1 28.2 28.8 28.3 30.9 28.9

ar/ct sec-1 0.42 0.45 0.44 0.46 0.50 o.40o o.43

cSw rad 0.20 o.18 0.16 0.1 9 0.23 0.14 0.17

ap mr/sec 44.6 44.o 38.3 44 -5 57.4 36.1 40.6

ac) mr 41 .6 45.2 52.4 52.2 61 .2 47.2 52.4
GT
ap/acp sec-1 1.07 0.98 0.76 0.85 0.94 0.76 0.78

clX m//sec 0.98 0.95 1.16 1 .o4 1.09 1.02 1.11

ay m 4.05 4.12 3.48 3.25 4.01 3.43 3.54

ay/ay sec-1 0.24 0.23 0.33 0.32 0.27 0.30 0..3

TR-1014-2

NCDED SIMUIATOR MOTIONS

m -- o.63 0o.44 0.26 0.16 0 .54

rm - 0.54 0.61 0.55 0. o54 0.58 0.66

m -_ 1 0.73 0.69 o0.41 I 0.29 - 0.77~~~~~~~~~~ -
I1

COMMIAVl
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TABLE C-5

PERFORMANCE DATA, IFR TiEACKING EXPERIMENT, SUBJECT JK

- T 2

CONFIGURATION FB 1 f 2 3 (no ) (no

NUMBER OF RUNS 5 6 | 5 6 6 .5 _5

TRIM CONDITIONS 

Va m/sec 32.0 32.2 32.5 32.3 31 .8 32.2 31 .9

Eth rad 0.51 0.51 0.51 0.51 0.51 0o.51 0.51
v rad 1 .23 1 .22 1 .28 1 .29 1 .21 1 .22 1 .23

VN m/sec --0.01 -0.09 -0.02 -0.03 -0.28 -0.05 -0 .01
PN j mr/sec -2.01 -2.32 -2.16 -2.10 -1 .97 -2.18_ -1 .87

LONGITUDINAL TASK PERFORMANCE

75 c cm 3.64 2.87 2.86 2.70 2.71 2.83 3.34
aq mr/sec 29.0 22.7 24 .3 22.2 21 .9 24.1 25.8

(lo mr 29.1 26.8 26.8 25.6 21 .9 29.8 27.2
aq/o- sec 1 1.00 0.85 0.91 0.87 1 .00 o.81 0.95

4~r m/sec2 0.97 0.76 0.98 0.82 0.76 o.86 0.89

ahr m/sec 0.54 0.5O 0.61 0.54 0.53 0.57 0.60

Gh m 1.72 1.95 1.76 1.89 1 .75 1.73 2.04
Lr/ah sec

- J1 0.32 0.27 0.35 J 0.28 0.30 [ .33 0 0.29
ILATFRL/DIRECTIOAL TASK PERFORMA0!NCE

cJ |cm 0.54 0.68 0.53 0.56 0.61 0.62 0.62
ar | mr/sec 17.1 18.2 15.5 17.7 19.2 1 5.8 1 5.8
a* mr 36.4 34 .3 36.1 37.4 44.-7 34.4 36.0

%r/81 |sec
-
1 o.48 0.53 0o.43 o.48 0.43 0.46 0.44

Tw t rad 0.22 0.22 0.17 o.18 0.20 0.17 0.17

Up |mr/sec 48.1 45.9 37.2 41 .8 47 .1 37.4 35.2

ca | mr 38.9 44.4 39.9 49.0 52.2 40.5 37.3

ap/acp sec-1 1 .22 1 .03 0.94 0.89 0.90 0.93 0.94
ay g mA/sec 0.96 1 .17 1 .18 1.34 1 1 9 1 .1 4 1 .18

ay m 4. 04 3.59 3.67 3 .30 3.42 3.07 3.37
oy/ry gsec-1 0.241 0.33 0.3 2 0.41 0.35 0.37 0.53
COWMANDED SIMULATOR MOTIONS

o~ jm 0.59 0.46 0.23 0.13 0.54 --

~@~ | m - 0.55| 0.51 0,55 O.49 0.51 o.48

a~ 1 min - 0.54 0.64 0.33 0.22 - 0.62
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TABLE C-6

DESCRIBING FUNCTION DATA, VFR TRACKING EXPERIMENT

a) SUBJECT EF

CONFIG. N P2 o.188 O.503 1 .257 3.016 6.283

PB 6 0.244 -5.31 -4.61 -14.98 -18.47 -54.19
-6o7.9 -134 .3 -249.7 -408.9 -723.6

0.252 -1 .03 -5.56 -1 5.84 -55.74 -35.14
1 6 0 ~.252 --77.2 -132.7 -217.1 -290.6 -479.2

2 6 0.219 2.10 -3.37 -11.48 -18.73 -36.02
-83.6 -136.2 -200.6 -365.0 -692.7

1o.i64 0.40 -4.01o -14.69 -22.77 -53.16
3-64.4 -138 . -21 6.4 -363,.1 -422.1

4 7~0.21 -0.63 -4.59 -12.66 -36.41 -50.64
7 0.216 -99.6 -149.5 -197 .5 -305.5 -403 .7

2 ^6 0.217 -5.65 -2.89 -1 0.66 -51 .04 -33.54
(no '7 ) -102.6 -149.5 -257.8 -505.0 -709.6

2 -1 .31 .77 -15.79 -i5.8o -3075
no 14x) __ _ _ -6 1 44.6 -1&5.1 -- 88 5.6 96.6

b) SUBJECT JK

MEASUREMENT FREQUENCY (rad/sec)

CONFIG. N p2 0.188 0.505 1.257 5.016 6.283

-0.75 0.57 -6.85 -8.58 -29.91
FB 7 0.399 -85.5 -121 .8 -188.1 -508.0 -542.5

4.20 -1.96 -8.99 -13.66 -27.87
1 8 0.33555 -156.0 -11 9.5 -168.2 -291 .1 -426.7

3 .1 6 -2.09 -5.29 -20.83 -25.14
~2 7 0.596 -98.4 --1 20.0 -176.6 -505.4 -44 4.7

344 6.37 -1 .1 6 -6.68 -26.52 -29.88
53 7 o~.3~ -78.4 -121 .5 -178.0 -572.2 -666.9

6.49 -1.89 -9.11 -19.38 -31.90
4 7 0.246 -72.3 -115.2 -180.1 -378.0 -718.7

2 ^ 0.24 5.49 -0- 77 -7.98 -1 6.12 -31 .48
(no ') .5-75.8 -122.7 -188.8 -367.4 -527.3

2 ^ ^ 4.17 -2.57 -8-39 -25.23 -25.97
(no ,) 7 0.2498 -122.4 -170.8 -62.6 -4 8( no 0,)-83.8 -1 22.4 -1 70.8 --362.6 --433.8

TR-1 014-2
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SUBJECT THRESHOLDS FOR PERCEPTION OF ROTATION*

SUBJECT ROLL PITCH YAW

EF 8.55 11.86 4.71

JK 10.12 3.66 2.79

TABLE C-8. EQUIVALENT SUBJECT VELOCITY THRESHOLDSt

SUBJECT ROLL PITCH YAW

EF 55.5 62.9 37.7

JK 65.6 19.4 22.4

TABLE C-9. SIMULATOR CAB RATESt

*In mr/sec2 , from Ref. 14.

tin mr/sec. Assumes Troll = 6.5 sec, Tpitch = 5.3 sec, and Tyaw = 8.0 sec
per Ref. 1 where Pthreshold - Troll Pthreshold, and similarly for other axes.

tIn mr/sec. Neglects residual tilt and rate washout effects, that is,
includes only the effects of motion scale factor.

TR-1014-2

CONFIGURATION FB 1 2 3 4 o n
(no z') (no 9 '

CT - - i5.4 19.2 33.4 57.4 18.1 20.
EF ~~~~~~~~~~~~~~~18.9 2205.38 

EF qi 9.7 17.0 18:9 22.5 1.:2

jor ___4.7 6.2 991 . . .

A

U^c - 16.1 18.6 51.5 47.1 '18.7T 17.6
JK Cq - i1.4 24.3 22.2 21.9 24.1 -

_____I -- 6.4 7.8 13.3 19.2 7.9 7.9~r

TABLE C-7.
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It can be concluded that the data do not establish any correlation between

the subjects' ability to detect angular rates and the rates actually measured.

Further, the angular rates are about the same or less than the supposed

thresholds. This suggests that the effective angular rate thresholds in

the simulated task are less than the heretofore supposed thresholds of

Table C-8. For example, in going from FB to 2, the computed roll rates

and "bandwidths" (ap/aq) decrease significantly, indicating the influence

of motion; yet the cab roll rates (a-) are approximately one-third the

subject thresholds.
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APPENDIX D

AD HOC CEXPERIMENT

During the course of the Phase II experiments, a need developed for

establishing how much linear travel should be designed into an all-axis

simulator for simulating flight with a STOL aircraft. A closely related

question is to ask how much residual tilt can be tolerated for a given

maximum linear travel. To analyze this question very briefly, it was

decided to use the AWJSRA simulation upon completion of the Phase II experi-

ments, perform a longitudinal maneuvering task, and rely on pilot commentary

as the experimental measurements. The specific task was to fly the AWJSRA

in level flight at 274 m altitude under VFR conditions, intercept the desired

glide path (Y = -0.131 rad) as indicated by the ILS needles, fly down the

glide path until a flare altitude was reached, and then flare the simulated

aircraft and try toland it. At touchdown, the computation ceased. During

this sequence of longitudinal task maneuvers, there were no disturbances,

so that the pilots could concentrate on the motion sensations to which they

were sbujected.

As an initial experiment, the parameters of an uncoordinated washout

were varied in several ways, using a single pilot subject whose extensive

experience with motion simulators qualified him to make at least preliminary

assessments. Preference for full motion amplitude was expressed early in

these runs. The variations started off with an uncoordinated washout, then

with alteration of some of the parameters was converted to a nearly coordi-

nated situation; thereby affording comparison of the relative effects of the

residual tilt in the two cases. By performing several iterations along this

line a configuration was arrived at which was uncoordinated (at least in the

mid frequency range) and which provided residual tilt sensations which were

low enough in the maneuvers to be tolerated by the subject. The resulting

configuration was used in the succeeding experimentation as a "baseline"

case. There were three variations: first, deleting the longitudinal drive

signal to the simulator; second. deleting that portion of the pitch drive

signal ascribable to residual tilt; and third, a combination of the preceding

two. These four experimental configurations are more fully documented in
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the next subsection of this appendix. The succeeding subsection describes

the methodology, results, and conclusions.

WASHOUT CONFIGURATION

The uncoordinated washout scheme used in this experiment was developed

in Refs. 12 and 13 and is illustrated (excluding the simulator compensation

and motion limiting scheme) in Fig. D-1. In this scheme, as well as the

scheme of Fig. A-6, small cab tilt angles are used to provide a low frequency

portion of the translational accelerations (or specific forces) sensed in

the simulator cab. In fact, the parameters of the lag filter in Fig. D-1

can be adjusted such that the system is coordinated with respect to input

forces; but it is never coordinated with respect to input body axis rates.

For small angles, the simulator cab rates are given by:

(KsKR/%T T )(O) --Y,
0 K(/) [,

2
(1/TR)(/TR2) I (KsK/TRTR)() yp
w 1 20~ ._+ 1 axp (D)

fr_(1/T~t>@](1/R2) r [ %,5]1T) i

where the second term represents the false rate cue attributable to residual

tilt.

The cab translational accelerations are given by:

E ay[, we][5n, axp (D-2)[azpJ

The amplitude response of this linear motion washout is shown in the

sketch of Fig. D-2. It is fourth order because of the necessity of using

the inertial washout to eliminate long term drifts in the final integration

of the computed linear accelerations of the motion simulator cab.

The major objective in the initial experimentation was to arrive at a

set of parameters for this scheme which, in the context of the maneuvering

task being performed, would provide realistic amplitudes of acceleration
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Ka

Figure D-2. Sketch of Linear Motion Washout Frequency Response

sensations with "tolerable" levels of residual tilt rates. Table D-1 lists

the parameters selected; these were used in the pilot opinion studies which

made up the major portion of the experiment. Table D-2 lists the four

configurations which were evaluated by the four subject pilots.

The specific force responses of this washout scheme, are given by

Eq. A-4. W .ITh t.he indicated substit-LLionis from Eq. D-1 aid- D-2 these

accelerations become (for the full motion confituration):

[axp - K )2 KRgKs/TR1_ axp
A { a 1T+
ay _ + > yp

azp R5, w][n h][,@(l/TR2)) 

K g (1 /1)]TR (1/TR2)
-+ lt + (D-3)

/1TO)[, w1(1/TR2) 0SO_9g

Ka(O) 1 1+ 10+
+[~2,' cu,][~n" 03/] 

The second tem zp

The second term is the residual force response to the aircraft rates.

TR-1 014-2
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TABLE D-1. UNCOORDINATED WASHOUT PARAMETERS

a. Attenuation and High Pass Filter

Ks = Ka = 1.0, ~n = 0.7, on = 0.6 sec
-
1

b. Rate Attenuation and Washout

K = 1.05 w = 2.5 sec

c. Lag Filter

KR = 0.0512 sec/m, TR1 = 0.5 sec,

d. Derived Parameters

0= o.988, X = 1.0018 sec
- 1, 1/TRy = 50.021 sec--1

e. Inertial Washout*

= 0.7, w = 0.1 sec-1

TABLE D-2. AD HOC EXPERIMENTAL CO]TFIGUgRATIONS

I. ~ull Motion

Parameters as listed in Table D-1, i.e., with both
linear motion and residual tilt.

II. No Longitudinal Motion

Longitudinal motion drive to simulator removed.

III. No Residual Tilt in Pitch

Ks = 0 for longitudinal task.

IV. No Longitudinal Motion or Residual Tilt

Combination of II and III, i.e., Ks = 0 in longitudinal
task, and no longitudinal motion drive to simulator.

*The limiting scheme described in Ref. 8 effectively prevented the
motion from exceeding ±2.44 m (soft limit).

TR-1 014-2

TR2 = 0.02 sec
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Figure D-3 sketches the pertinent force and rate amplitude responses as

a function of frequency for the four configurations of Table D-2, assuming

the time constant, TR2, to be small. The lack of coordination manifests

itself as a dip in the solid curve of Fig. D-3(a); approximately a 10 dB

dip for the data of Table D-1. The equivalent time responses to step inputs

of either acceleration or rate are plotted in Fig. D-4 for the specific

experimental configurations "flown". These should be borne in mind in the

context of the pilot commentary to follow in the next subsection.

SUBJECTS, PROCEDURES, AIND RESULTS

Four subjects were used in the experiment, three of whom are NASA

research pilots and the fourth an airline flight engineer. The first

subject, RI, had extensive experience with the AWJSRA as simulated on the

Flight Simulator for Advanced Aircraft (FSAA) at Ames Research Center. His

commentary is probably the most reliable of the four. The next subject, EF,

was the same individual who participated in two of the Phase II experiments.

The third subject, RG, has had VTOL and STOL flight experience, but very

limited experience with AWJSRA simulations. The fourth subject, GH, parti-

cipated in the Phase I experiment and the IFR tracking task experiment of

Phase II - his prior experience with simulations of the AWJSRA was likewise

relatively limited.

The procedure used by the subject pilots was to perform the intended

maneuver (or for that matter, any other maneuver of a longitudinal nature)

and then evaluate their sensations of motion and how it may have affected

performance of the task. They were exposed to the four configurations of

Table D-2 in order, typically three, sometimes more runs per configuration.

When they had been exposed to all four, they were allowed to review the con-

figurations by additional runs at the pilot's discretion to crystallize their

impressions. Time did not permit this procedure to be concluded for EF, who

only had an opportunity to "fly" Configuration I (full motion). Subject GH

flew the first few runs fixed base to familiarize himself with the task.

During all of these runs, pilot commentary was recorded by means of a

voice-operated tape recorder. The key comments from the tape transcriptions

are sumnarized in Table D-3 and constitute the results of the experiment.
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Three of the subjects, RI, EF, and RG, notice the pitch angular rate

cues more than anything else. Subject GH, however, feels that the motion

sensations are relatively low. This remark goes along with earlier comments

from the IFR tracking experiment discussed in Section II of the main text.

Similarly, the first three subjects have remarks which would indicate that

residual tilt was a detriment. However, GH states that without the residual

tilt the motion feels strange. He also says that he misses the pitch

movements - not longitudinal accelerations, but pitch motion. It can be

surmised that he is confusing the pitching which one normally expects to

get when maneuvering the airplane with the diverter with the additional

pitching which he gets from the residual tilt. Because of his recent

experience on the simulator (Phase I and II experiments), he apparently

confuses one with the other. When the residual tilt is removed it causes

him to feel that the motion is strange.

With regard to the sensations of longitudinal acceleration, Table D-3

indicates a variety of different opinions. RI seems to feel that longitudinal

acceleration doesn't really add very much. EF primarily evaluates the

longitudinal acceleration in terms of sensing that the motion is being washed

out. This, of course, is because the simulator is not perfectly coordinated.

It can be argued that EF, as the only nonresearch pilot in the group and

therefore least familiar with moving'base simulators, voices an opinion

closest to an accurate motion assessment - he finds fault with both the

angular rates and the linear accelerations as one would expect from the

washout parameters. The remaining subjects, to continue this argument, are

presumably so familiar with the sensations of a linear motion washout as

to discount or ignore the motion defects - certainly they do not have

remarks in their recorded commentary that suggest specific awareness of

the motion washout.

To continue, RG's commentary in Table D-3 suggests that he definitely

senses the presence or absence of the longitudinal motion. However, he

says this while oscillating the diverter control back and forth in a rela-

tively rapid fashion and the remark may not apply to the diverter motions

which he might normally use to effect pitchover or flare. GtI also feels

the lack of longitudinal acceleration when it is absent. This more or
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less agrees with RG's comments. With the exception of RI, none of the

commentary suggests that the presence or absence of longitudinal motion

affects performance - and even RI suggests only a mild effect, if any.

One can speculate on JK's commentary (the subject who expressed preference

for longitudinal motion cues in the VFR experiment discussed in Section IV);

unfortunately he was unavailable when the Ad Hoc experiment was being run.

These experimental results may be summarized as follows:

o Pilots are intolerant of residual tilt. It leads
to an erroneous impression of aircraft pitch in
the pitchover and (presumably - it wasn't mentioned
specifically) flare maneuvers.

O Most pilots believe that performance is relatively
insensitive to the presence or absence of (at least)
linear motiono Angular motion presumably does affect
performance, otherwise they wouldn't complain about
erroneous cues in pitch. However, their sense of
realism is affected by the presence of linear acce--
leration, particularly at the higher frequencies.

o Subjects prefer full motion amplitude - again for
sake of "realism" - full motion amplitude was Judged
"gratifying" by the pilot subject used in the pre-
liminary experimentation.

CONCLUSIONS

The basic conclusion, of course, is that it is difficult to "fool" a

pilot into thinking he has full fidelity motion cues in a longitudinal

maneuvering task (motion variables: x, z, and 0) when he doesn't. In

the particular instance tested, incorporation of residual tilt as a means

of simulating the low frequency sensations of fore-and-aft acceleration

was unsuccessful - the tilt rates are high enough to be detected and to

confuse the pilot. To successfully imitate these sensations would require

a simulator of far greater longitudinal travel. Such a simulator would

permit use of much slower washouts (low values of a
n

in the washout confi-

guration discussed herein) with lesser amounts of residual tilt (implies

lower residual tilt rates) for simulation of the lowest frequency linear

accelerations.
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The results leave open the question of whether or not "good" simulation

of longitudinal accelerations is "necessary" for successful evaluation of

a STOL aircraft. Certainly such a simulation contributes to realism - it

may even contribute to performance for some pilots (e.g., for JK perhaps).

No conclusion can be drawn in this area. The only way to answer this

question in the opinion of the authors is to build a simulator capable of

accurately simulating these accelerations. With the results currently

available it can always be argued that the reason the linear acceleration

cues are unnecessary for STOL simulation is because simulator-wise pilots

ignore them as being false, distorted, or attenuated cues.

Finally, the results strongly suggest that the best compromise in a

limited travel simulator is one of minimizing the residual tilt such that

the tilt rates are at very low levels - better to distort the low frequency

sensations of longitudinal acceleration than to confuse the pilot with false

pitch rate cues. This conclusion is stronger than that drawn from the

Phase II experiments because the context is one of large amplitude maneuvers

(rather than small corrections) in an aircraft having substantial coupling

of the path controller (the diverter) to pitch attitude changes,
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